Interfacial solar distillation (ISD) is an approach with low cost and low energy demand useful for seawater desalination and freshwater production. However, the commercial potential of ISD for applications such as polluted seawater desalination or industrial wastewater reuse may be hindered by low rejection of volatile and semivolatile contaminants. For the first time, the results of this study showed that the transport (from bulk water (B) to distilled water (D)) of volatile and semivolatile contaminants during the solar desalination process was highly correlated with compound volatility ( = 0.858). The obtained relationship was verified to be capable of predicting the distillation concentration ratio (/) of different contaminants ( = 6.29 × 10-2.94 × 10 atm·m·mol) during the ISD process. Compounds such as phenols, which have relatively high volatilization and condensation rates, deserve the most attention as potential contaminants in the distilled water. Meanwhile, other compounds that are more volatile than phenol condensed less in distilled water. Adding an activated carbon adsorbent or a photothermal oxidant is a promising strategy to effectively mitigate the distillation of contaminants and ensure water safety. These results fill the knowledge gap in understanding the transport of volatile and semivolatile compounds in ISD for the treatment of complex source waters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.0c07191 | DOI Listing |
Int J Environ Res Public Health
December 2024
Department of Environmental Health, School of Public Health, Boston University, Boston, MA 02118, USA.
Residents of Bangladesh are exposed to numerous chemicals due to local industries, including dyeing mills, cotton mills, and the use of biomass in daily cooking. It is, therefore, important to characterize the exposome and work to identify risk factors of exposure. We used silicone wristband passive samplers to evaluate exposure to volatile and semi-volatile organic compounds in a sample of 40 children in the Araihazar upazila of Bangladesh.
View Article and Find Full Text PDFJ Chromatogr A
December 2024
Thermofisher Scientific (China) Co. Ltd. Building A, No.2517 Jinke Road, Pudong District, Shanghai 201203, China. Electronic address:
Polysorbates (PS), as non-ionic surfactants, contribute significantly to the stability of proteins in formulations. However, their lack of chromophore groups makes them difficult to detect with high sensitivity and simplicity. The charged aerosol detector (CAD) is an emerging and universal detector that can provide highly sensitive response signals to non-volatile or semi-volatile substances, such as esters, acids, oxidized aldehydes, and contaminant ions in PS.
View Article and Find Full Text PDFChemosphere
December 2024
Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, 08034 Barcelona, Spain. Electronic address:
The assessment of persistence of organic pollutants in seawater is limited by the lack of user-friendly, quick protocols for assessing one of their main sinks, degradation by marine bacteria. Here we present an experimental workflow to identify organic pollutants degradation, taking organophosphate esters flame retardants and plasticizers (OPEs-FR-PL), as a model family of synthetic chemicals released into the marine environment that are particularly widespread due to their persistence and semi-volatile nature. The proposed novel workflow combines culture-dependent techniques, solvent demulsification-dispersive liquid-liquid microextraction, with quantitative liquid chromatography coupled with mass spectrometry analyses in order to identify marine bacterial isolates with the potential to degrade OPEs-FR-PL in the marine environment.
View Article and Find Full Text PDFChemosphere
December 2024
Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, 21, Av. Catalunya, 46020, Valencia, Spain.
This work aims to establish a strategy to comprehensively assess the indoor air quality in schools including the analysis of chemical pollutants, bio-aerosols like fungi, bacteria and respiratory viruses and the identification of volatile and semi-volatile organic compounds applying non-targeted approaches. For this, a pilot study was performed in four primary schools from Spain, located in different urban and rural areas during different seasons. Common indoor pollutants, like CO NO, O, CO, particulate matter (PM, PM), ultrafine particles (UFP), total volatile organic compounds (TVOCs), and formaldehyde (HCHO), were assessed in terms of maximum recommended levels, daily variations, seasonality, and school location.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong 30019, Republic of Korea. Electronic address:
This study investigated the effect of light on emission of various volatile and semi-volatile organic compounds (VOCs and SVOCs), from polyvinyl chloride (PVC) products using xenon lamp as a solar light simulator. The emission flux generally decreased over time, with the light-induced targeted ∑VOC flux being about 1.6-times higher than heat-induced flux during the initial 1-h exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!