Faecal proteomics studies have focussed on identification of microbial proteins, however; stool represents a valuable resource to interrogate the host interactions with the microbiota without the need for invasive intestinal biopsies. As the widely used enrichment method (differential centrifugation, DC) enriches for microbial proteins, we compared two other methods for enrichment of host proteins, termed 'host enriched' (HE) and ALL (all proteins). The HE and ALL protocols identified 1.8-fold more host proteins than DC while detecting a similar number of microbial proteins, but the methods had limited overlap in the specific microbial proteins detected. To maximize identification of both host and microbial proteins, samples were subjected to HE and the remaining material was used to perform DC. These two fractions displayed large differences in relative taxonomic abundance and cellular compartmentalization, with proteins from Bacteroidales and extracellular vesicles were enriched in the soluble HE component. The combination of data generated from these two fractions may allow identification of more distinct proteins than simply performing samples in duplicate or more complex fractionation techniques, or a single fraction could be chosen to suit the experimental hypothesis. SIGNIFICANCE: We compared how different stool protein preparation methods influenced the taxonomic and functional characteristics of microbial and host proteins identified. Surprisingly, a method designed to enrich for host proteins recovered a similar number of microbial protein groups to the method that specifically enriched intact bacterial cells. However, the taxonomic and subcellular origin of the microbial proteins differed considerably between the methods. By implementing a two-step method, we could maximize recovery of both host and microbial proteins derived from different cellular compartments and taxa.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jprot.2021.104219 | DOI Listing |
Eur J Histochem
January 2025
Department of Critical Care Medicine, The Qujing No.1 People's Hospital, Qujing.
Intestinal barrier damage causes an imbalance in the intestinal flora and microbial environment, promoting a variety of gastrointestinal diseases. This study aimed to explore the mechanism by which adipose-derived stem cells (ADSCs) repair intestinal barrier damage. The human colon adenocarcinoma cell line Caco-2 and rats were treated with lipopolysaccharide (LPS) to establish in vitro and in vivo models, respectively, of intestinal barrier damage.
View Article and Find Full Text PDFFront Nutr
January 2025
College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, China.
In this study, Chinese yam polysaccharides (CYPs) were fermented using M616, and changes in the chemical composition, structure, and anti-inflammatory activity of CYPs before and after fermentation were investigated. The carbohydrate content of M616-fermented CYP (CYP-LP) increased from 71.03% ± 2.
View Article and Find Full Text PDFArch Pharm (Weinheim)
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.
Quinolone antibiotics are known for their antibacterial activity by inhibiting the enzyme DNA gyrase. Inspired by their mechanism, new compounds combining 1,4-dihydropyrimidine, a quinolone isostere, with pyridine/pyrimidine rings were synthesized. These derivatives showed antibacterial effects, likely through DNA gyrase inhibition, as supported by molecular docking and dynamics simulations.
View Article and Find Full Text PDFBiotechnol J
January 2025
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
Terpenoids are widely distributed in nature and have various applications in healthcare products, pharmaceuticals, and fragrances. Despite the significant potential that terpenoids possess, traditional production methods, such as plant extraction and chemical synthesis, face challenges in meeting current market demand. With the advancement of synthetic biology and metabolic engineering, it becomes feasible to construct efficient microbial cell factories for large-scale production of terpenoids.
View Article and Find Full Text PDFBMC Med Genomics
January 2025
Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania.
Background: Methicillin-resistant Staphylococcus aureus (MRSA) is a formidable public scourge causing worldwide mild to severe life-threatening infections. The ability of this strain to swiftly spread, evolve, and acquire resistance genes and virulence factors such as pvl genes has further rendered this strain difficult to treat. Of concern, is a recently recognized ability to resist antiseptic/disinfectant agents used as an essential part of treatment and infection control practices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!