The flavonoid quercetin reduces cell migration and increases NIS and E-cadherin mRNA in the human thyroid cancer cell line BCPAP.

Mol Cell Endocrinol

Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; NUMPEX, Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Brazil. Electronic address:

Published: June 2021

Thyroid cancer is the most frequent cancer of the endocrine system. Most patients are treated with thyroidectomy followed by radioiodine therapy. However, in part of the patients, a reduction of the sodium-iodide symporter (NIS) occurs, rendering radioiodine therapy ineffective. Moreover, epithelial-mesenchymal transition (EMT) may occur, leading to more aggressive and invasive features. Herein, we evaluated the effect of the flavonoid quercetin on EMT and NIS expression in BCPAP, a papillary thyroid carcinoma cell line. BCPAP was treated with 100 μM quercetin for 24 h and cell viability, apoptosis, EMT markers and NIS were evaluated. Quercetin decreased cell viability by enhancing apoptosis. The flavonoid also reduced matrix metalloproteinase 9 and increased E-cadherin mRNA levels, inhibiting BCPAP adhesion and migration. Additionally, quercetin increased NIS expression and function. Thus, our results suggest that quercetin could be useful as adjuvant in thyroid cancer therapy, inducing apoptosis, reducing invasion and increasing the efficacy of radioiodine therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mce.2021.111266DOI Listing

Publication Analysis

Top Keywords

thyroid cancer
12
radioiodine therapy
12
flavonoid quercetin
8
e-cadherin mrna
8
cell bcpap
8
nis expression
8
cell viability
8
cell
5
nis
5
quercetin
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!