β-Thymosin is a multifunctional peptide ubiquitously expressed in vertebrates and invertebrates. Many studies have found β-thymosin is critical for wound healing, angiogenesis, cardiac repair, hair regrowth, and anti-fibrosis in vertebrates, and plays an important role in antimicrobial immunity in invertebrates. However, whether β-thymosin participates in the regeneration of organisms is still poorly understood. In this study, we identified a β-thymosin gene in Dugesia japonica which played an important role in stem cell proliferation and neuron regeneration during the tissue repair process in D. japonica. Sequencing analysis showed that β-thymosin contained two conserved β-thymosin domains and two actin-binding motifs, and had a high similarity with other β-thymosins of invertebrates. In situ or fluorescence in situ hybridization analysis revealed that Djβ-thymosin was co-localized with DjPiWi in the neoblast cells of intact adult planarians and the blastema of regenerating planarians, suggesting Djβ-thymosin has a potential function of regeneration. Disruption Djβ-thymosin by RNA interference results in a slightly curled up head of planarian and stem cell proliferation defects. Additionally, we found that, upon amputation, Djβ-thymosin RNAi-treated animals had impaired regeneration ability, including impaired blastema formation, delayed eyespot formation, decreased brain area, and disrupted central CNS formation, implying Djβ-thymosin is an essential regulator of stem cell proliferation and neuron regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dci.2021.104097 | DOI Listing |
Stem Cells Dev
January 2025
Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
Autologous hematopoietic stem cell transplantation is used to restore bone marrow function after high-dose chemotherapy. For apheresis, granulocyte colony-stimulating factor (G-CSF) is standard of care, but obtaining sufficient stem cells can be challenging. Other mobilization agents include plerixafor and PEGylated G-CSF (PEG-G-CSF).
View Article and Find Full Text PDFDevelopment
January 2025
Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
Hematopoietic development is tightly regulated by various factors. The role of RNA m6A modification during fetal hematopoiesis, particularly in megakaryopoiesis, remains unclear. Here, we demonstrate that loss of m6A methyltransferase METTL3 induces formation of double-stranded RNAs (dsRNAs) and activates acute inflammation during fetal hematopoiesis.
View Article and Find Full Text PDFJ Clin Microbiol
January 2025
Department of Medicine, Weill Cornell Medical College, New York, New York, USA.
Invasive pulmonary infections are a significant cause of morbidity and mortality in patients with hematological malignancies and hematopoietic stem cell transplantation (HCT) recipients. A delay in identifying a causative agent may result in late initiation of appropriate treatment and adverse clinical outcomes. We examine the diagnostic utility of PCR-based assays in evaluating invasive pulmonary infections from bronchoalveolar lavage (BAL).
View Article and Find Full Text PDFIUBMB Life
January 2025
Department of General Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
Tamoxifen (TAM) is employed to treat premenopausal ER-positive breast cancer patients, but TAM resistance is the main reason affecting its efficacy. Thus, addressing TAM resistance is crucial for improving therapeutic outcomes. This study explored the potential role of Tinagl1, a secreted extracellular matrix protein, whose expression is compromised in TAM-resistant MCF-7 breast cancer cells (MCF-7R).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!