A review of the functional effects of pine nut oil, pinolenic acid and its derivative eicosatrienoic acid and their potential health benefits.

Prog Lipid Res

School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom.

Published: April 2021

Pine nut oil (PNO) is rich in a variety of unusual delta-5-non-methylene-interrupted fatty acids (NMIFAs), including pinolenic acid (PLA; all cis-5,-9,-12 18:3) which typically comprises 14 to 19% of total fatty acids. PLA has been shown to be metabolised to eicosatrienoic acid (ETA; all cis-7,-11,-14 20:3) in various cells and tissues. Here we review the literature on PNO, PLA and its metabolite ETA in the context of human health applications. PNO and PLA have a range of favourable effects on body weight as well as fat deposition through increased energy expenditure (fatty acid oxidation) and decreased food energy intake (reduced appetite). PNO and PLA improve blood and hepatic lipids in animal models and insulin sensitivity in vitro and reduce inflammation and modulate immune function in vitro and in animal models. The few studies which have examined effects of ETA indicate it has anti-inflammatory properties. Another NMIFA from PNO, sciadonic acid (all cis-5,-11,-14 20:3), has generally similar properties to PLA where these have been investigated. There is potential for human health benefits from PNO, its constituent NMIFA PLA and the PLA derivative ETA. However further studies are needed to explore the effects in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plipres.2021.101097DOI Listing

Publication Analysis

Top Keywords

pno pla
12
pine nut
8
nut oil
8
pinolenic acid
8
eicosatrienoic acid
8
health benefits
8
fatty acids
8
pla
8
human health
8
animal models
8

Similar Publications

A review of the functional effects of pine nut oil, pinolenic acid and its derivative eicosatrienoic acid and their potential health benefits.

Prog Lipid Res

April 2021

School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom.

Pine nut oil (PNO) is rich in a variety of unusual delta-5-non-methylene-interrupted fatty acids (NMIFAs), including pinolenic acid (PLA; all cis-5,-9,-12 18:3) which typically comprises 14 to 19% of total fatty acids. PLA has been shown to be metabolised to eicosatrienoic acid (ETA; all cis-7,-11,-14 20:3) in various cells and tissues. Here we review the literature on PNO, PLA and its metabolite ETA in the context of human health applications.

View Article and Find Full Text PDF

Purpose: The present study aimed to investigate the effects of different dosages of propofol, that induced different depths of anesthesia, on the local activity and connectivity of nuclei within the cortico-reticulo-thalamic loops, as well as the release of amino acids in those nuclei.

Methods: The nonlinear dynamics analysis of electroencephalogram, including approximate entropy (ApEn) and cross-ApEn (C-ApEn), was used to analyze the effects of different dosages of propofol on the local activity and connectivity of the important nuclei, including the primary somatosensory cortex (S1), ventroposteromedial thalamic nucleus (VPM), reticular thalamic nucleus (RTN), and oral part of the pontine reticular nucleus (PnO). The levels of glutamate (Glu), γ-aminobutyric acid (GABA), and glycine (Gly) in the S1, VPM, and RTN were detected using cerebral microdialysis.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammatory synovitis, bone atrophy, and subsequent progressive destruction of articular tissue. Targeted inhibition of receptor activator of NF-kB ligand (RANKL) has been highly successful in preventing RA-mediated bone erosion in animal models and patients, suggesting that development of a RANKL vaccine might be of therapeutic value. Our previous study has shown that the recombinant RANKL vaccine YpNOPhe, generated by replacement of a single tyrosine residue (Tyr) in murine RANKL (mRANKL) with p-nitrophenylalanine (pNOPhe), induces a high titer antibody response and prevents ovariectomy (OVX)-induced bone loss in mice.

View Article and Find Full Text PDF

The positional distribution pattern of fatty acids (FAs) in the triacylglycerols (TAGs) affects intestinal absorption of these FAs. The aim of this study was to compare lymphatic absorption of pinolenic acid (PLA) present in structured pinolenic TAG (SPT) where PLA was evenly distributed on the glycerol backbone, with absorption of pine nut oil (PNO) where PLA was predominantly positioned at the sn-3 position. SPT was prepared via the nonspecific lipase-catalyzed esterification of glycerol with free FA obtained from PNO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!