During pregnancy, the vaginal microbiome plays an important role in both maternal and neonatal health outcomes. Throughout pregnancy, the vaginal microbial composition undergoes significant changes, including a decrease in overall diversity and enrichment with Lactobacillus spp. In turn, the modifications in the microbial profiles are associated with shifts in the composition of vaginal metabolites. In this study, we characterized the vaginal metabolic profiles throughout pregnancy at two different gestational ages, correlating them with a microscopic evaluation of the vaginal bacterial composition. A total of 67 Caucasian pregnant women presenting to the Family Advisory Health Centres of Ravenna (Italy) were enrolled and a vaginal swab was collected at gestational ages 9-13 weeks (first trimester) and 20-24 weeks (second trimester). The composition of the vaginal microbiome was assessed by Nugent score and women were divided in 'H' (normal lactobacilli-dominated microbiota), 'I' (intermediate microbiota), and 'BV' (bacterial vaginosis) groups. Starting from the cell-free supernatants of the vaginal swabs, a metabolomic analysis was performed by means of a 1H-NMR spectroscopy. From the first to the second trimester, a greater number of women showed a normal lactobacilli-dominated microbiota, with a reduction of cases of dysbiosis. These microbial shifts were associated with profound changes in the vaginal metabolic profiles. Over the weeks, a significant reduction in the levels of BV-associated metabolites (e.g. acetate, propionate, tyramine, methylamine, putrescine) was observed. At the same time, the vaginal metabolome was characterized by higher concentrations of lactate and of several amino acids (e.g. tryptophan, threonine, isoleucine, leucine), typically found in healthy vaginal conditions. Over time, the vaginal metabolome became less diverse and more homogeneous: in the second trimester, women with BV showed metabolic profiles more similar to the healthy/intermediate groups, compared to the first trimester. Our data could help unravel the role of vaginal metabolites in the pathophysiology of pregnancy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8031435PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0249925PLOS

Publication Analysis

Top Keywords

metabolic profiles
16
second trimester
16
vaginal
14
vaginal metabolic
12
profiles pregnancy
8
pregnancy vaginal
8
vaginal microbiome
8
composition vaginal
8
vaginal metabolites
8
gestational ages
8

Similar Publications

Background: Abnormal glucose metabolism in AD brains correlates with cognitive deficits. The glucose changes are consistent with brain thiamine (vitamin B1) deficiency. In animals, thiamine deficiency causes multiple AD-like changes including memory loss, neuron loss, brain inflammation, enhanced phosphorylation of tau, exaggerated plaque formation and elevated advanced glycation end products (AGE).

View Article and Find Full Text PDF

Background: Non-human primates (NHP) serve as an important bridge for testing therapeutic agents that have been previously shown to be effective in transgenic mouse models. Our earlier published data using an NHP model of sporadic AD-related pathology that develops abundant cerebral amyloid angiopathy (CAA), squirrel monkeys (SQMs), indicates that chronic treatment with TLR9 agonist, class B CpG ODN, safely ameliorates CAA while promoting cognitive benefits. In the present study, we intended to delineate alterations in brain metabolome induced by chronic CpG ODN administration in order to provide further insight into CpG ODN immunomodulatory capabilities.

View Article and Find Full Text PDF

The TIRAP protein is an adaptor protein in TLR signaling which links TLR2 and TLR4 to the adaptor protein Myd88. The transcriptomic profiles of zebrafish larvae from a , and mutant and the corresponding wild type controls under unchallenged developmental conditions revealed a specific involvement of in calcium homeostasis and myosin regulation. Metabolomic profiling showed that the mutation results in lower glucose levels, whereas a mutation leads to higher glucose levels.

View Article and Find Full Text PDF

The paradigm of stem cell secretome in tissue repair and regeneration: Present and future perspectives.

Wound Repair Regen

January 2025

Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.

As the number of patients requiring organ transplants continues to rise exponentially, there is a dire need for therapeutics, with repair and regenerative properties, to assist in alleviating this medical crisis. Over the past decade, there has been a shift from conventional stem cell treatments towards the use of the secretome, the protein and factor secretions from cells. These components may possess novel druggable targets and hold the key to profoundly altering the field of regenerative medicine.

View Article and Find Full Text PDF

Background: Space-induced plant mutagenesis, driven by cosmic radiation, offers a promising approach for the selective breeding of new plant varieties. By leveraging the unique environment of outer space, we successfully induced mutagenesis in 'Deqin' alfalfa and obtained a fast-growing mutant. However, the molecular mechanisms underlying its rapid growth remain poorly unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!