AI Article Synopsis

  • The study investigates how inhibitory neurons maintain balance in the brain’s neural network, despite being less numerous than excitatory neurons.
  • It uses advanced techniques to analyze interactions among around 1000 neurons, focusing on the role and influence of individual inhibitory neurons.
  • The findings reveal that influential inhibitory neurons have greater control over excitatory neurons and are predominantly found in deeper cortical layers, suggesting their critical role in maintaining overall neural activity balance.

Article Abstract

The brain is a network system in which excitatory and inhibitory neurons keep activity balanced in the highly non-random connectivity pattern of the microconnectome. It is well known that the relative percentage of inhibitory neurons is much smaller than excitatory neurons in the cortex. So, in general, how inhibitory neurons can keep the balance with the surrounding excitatory neurons is an important question. There is much accumulated knowledge about this fundamental question. This study quantitatively evaluated the relatively higher functional contribution of inhibitory neurons in terms of not only properties of individual neurons, such as firing rate, but also in terms of topological mechanisms and controlling ability on other excitatory neurons. We combined simultaneous electrical recording (~2.5 hours) of ~1000 neurons in vitro, and quantitative evaluation of neuronal interactions including excitatory-inhibitory categorization. This study accurately defined recording brain anatomical targets, such as brain regions and cortical layers, by inter-referring MRI and immunostaining recordings. The interaction networks enabled us to quantify topological influence of individual neurons, in terms of controlling ability to other neurons. Especially, the result indicated that highly influential inhibitory neurons show higher controlling ability of other neurons than excitatory neurons, and are relatively often distributed in deeper layers of the cortex. Furthermore, the neurons having high controlling ability are more effectively limited in number than central nodes of k-cores, and these neurons also participate in more clustered motifs. In summary, this study suggested that the high controlling ability of inhibitory neurons is a key mechanism to keep balance with a large number of other excitatory neurons beyond simple higher firing rate. Application of the selection method of limited important neurons would be also applicable for the ability to effectively and selectively stimulate E/I imbalanced disease states.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8031186PMC
http://dx.doi.org/10.1371/journal.pcbi.1008846DOI Listing

Publication Analysis

Top Keywords

inhibitory neurons
28
controlling ability
24
excitatory neurons
20
neurons
19
high controlling
12
neurons terms
8
individual neurons
8
firing rate
8
ability neurons
8
ability effectively
8

Similar Publications

Selective Colocalization of GHSR and GLP-1R in a Subset of Hypothalamic Neurons and Their Functional Interaction.

Endocrinology

November 2024

Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA); National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina.

The GH secretagogue receptor (GHSR) and the glucagon-like peptide-1 receptor (GLP-1R) are G protein-coupled receptors with critical, yet opposite, roles in regulating energy balance. Interestingly, these receptors are expressed in overlapping brain regions. However, the extent to which they target the same neurons and engage in molecular crosstalk remains unclear.

View Article and Find Full Text PDF

Deep Learning-Based Ion Channel Kinetics Analysis for Automated Patch Clamp Recording.

Adv Sci (Weinh)

December 2024

Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, China.

The patch clamp technique is a fundamental tool for investigating ion channel dynamics and electrophysiological properties. This study proposes the first artificial intelligence framework for characterizing multiple ion channel kinetics of whole-cell recordings. The framework integrates machine learning for anomaly detection and deep learning for multi-class classification.

View Article and Find Full Text PDF

Olfactory deficits in aging and Alzheimer's-spotlight on inhibitory interneurons.

Front Neurosci

December 2024

Institute of Physiology, RG Neurophysiology and Optogenetics, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany.

Cognitive function in healthy aging and neurodegenerative diseases like Alzheimer's disease (AD) correlates to olfactory performance. Aging and disease progression both show marked olfactory deficits in humans and rodents. As a clear understanding of what causes olfactory deficits is still missing, research on this topic is paramount to diagnostics and early intervention therapy.

View Article and Find Full Text PDF

Objective: Acetylcholine modulates the activity of the direct and indirect pathways within the striatum through interaction with muscarinic M and M receptors. M receptors are uniquely positioned to regulate plasticity within the direct pathway and play a substantial role in reward and addiction-related behaviors. However, the role of M receptors on cholinergic neurons has been less explored.

View Article and Find Full Text PDF

Background: Long-term use of levodopa, a metabolic precursor of dopamine (DA) for alleviation of motor symptoms in Parkinson's disease (PD), can cause a serious side effect known as levodopa-induced dyskinesia (LID). With the development of LID, high-frequency gamma oscillations (~100 Hz) are registered in the motor cortex (MCx) in patients with PD and rats with experimental PD. Studying alterations in the activity within major components of motor networks during transition from levodopa-off state to dyskinesia can provide useful information about their contribution to the development of abnormal gamma oscillations and LID.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!