A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Petersen Graph Multi-Orientation Based Multi-Scale Ternary Pattern (PGMO-MSTP): An Efficient Descriptor for Texture and Material Recognition. | LitMetric

Classifying and modeling texture images, especially those with significant rotation, illumination, scale, and view-point variations, is a hot topic in the computer vision field. Inspired by local graph structure (LGS), local ternary patterns (LTP), and their variants, this paper proposes a novel image feature descriptor for texture and material classification, which we call Petersen Graph Multi-Orientation based Multi-Scale Ternary Pattern (PGMO-MSTP). PGMO-MSTP is a histogram representation that efficiently encodes the joint information within an image across feature and scale spaces, exploiting the concepts of both LTP-like and LGS-like descriptors, in order to overcome the shortcomings of these approaches. We first designed two single-scale horizontal and vertical Petersen Graph-based Ternary Pattern descriptors ( PGTP and PGTP ). The essence of PGTP and PGTP is to encode each 5×5 image patch, extending the ideas of the LTP and LGS concepts, according to relationships between pixels sampled in a variety of spatial arrangements (i.e., up, down, left, and right) of Petersen graph-shaped oriented sampling structures. The histograms obtained from the single-scale descriptors PGTP and PGTP are then combined, in order to build the effective multi-scale PGMO-MSTP model. Extensive experiments are conducted on sixteen challenging texture data sets, demonstrating that PGMO-MSTP can outperform state-of-the-art handcrafted texture descriptors and deep learning-based feature extraction approaches. Moreover, a statistical comparison based on the Wilcoxon signed rank test demonstrates that PGMO-MSTP performed the best over all tested data sets.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2021.3070188DOI Listing

Publication Analysis

Top Keywords

ternary pattern
12
pgtp pgtp
12
petersen graph
8
graph multi-orientation
8
multi-orientation based
8
based multi-scale
8
multi-scale ternary
8
pattern pgmo-mstp
8
descriptor texture
8
texture material
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!