Prenylated Coumaric Acids from Beneficially Modulate Adipogenesis.

J Nat Prod

Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Illinois 60612, United States.

Published: April 2021

Two new diprenylated coumaric acid isomers ( and ) and two known congeners, capillartemisin A () and B (), were isolated from as bioactive markers using bioactivity-guided HPLC fractionation. Their structures were determined by spectroscopic means, including 1D and 2D NMR methods and LC-MS, with their purity assessed by 1D H pure shift qNMR spectroscopic analysis. The bioactivity of compounds was evaluated by enhanced accumulation of lipids, as measured using Oil Red O staining, and by increased expression of several adipocyte marker genes, including adiponectin in 3T3-L1 adipocytes relative to untreated negative controls. Compared to the plant's 80% EtOH extract, these purified compounds showed significant but still weaker inhibition of TNFα-induced lipolysis in 3T3-L1 adipocytes. This suggests that additional bioactive substances are responsible for the multiple metabolically favorable effects on adipocytes observed with extract.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8132292PMC
http://dx.doi.org/10.1021/acs.jnatprod.0c01149DOI Listing

Publication Analysis

Top Keywords

3t3-l1 adipocytes
8
prenylated coumaric
4
coumaric acids
4
acids beneficially
4
beneficially modulate
4
modulate adipogenesis
4
adipogenesis diprenylated
4
diprenylated coumaric
4
coumaric acid
4
acid isomers
4

Similar Publications

Interaction of Vitamin D-BODIPY With Fat Cells and the Link to Obesity-associated Vitamin D Deficiency.

Anticancer Res

January 2025

Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, U.S.A.;

Background/aim: Obese individuals often exhibit vitamin D deficiency, potentially due to sequestration in fat cells. Little is known about how vitamin D enters adipocytes and associates with the intracellular lipid droplet.

Materials And Methods: Newly differentiated human and mouse (3T3-L1) adipocytes and primary mouse adipocytes were treated with vitamin D covalently linked to green fluorescent BODIPY (VitD-B) or Green BODIPY (GB) as control.

View Article and Find Full Text PDF

Loss of Mfn1 but not Mfn2 enhances adipogenesis.

PLoS One

December 2024

Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom.

Objective: A biallelic missense mutation in mitofusin 2 (MFN2) causes multiple symmetric lipomatosis and partial lipodystrophy, implicating disruption of mitochondrial fusion or interaction with other organelles in adipocyte differentiation, growth and/or survival. In this study, we aimed to document the impact of loss of mitofusin 1 (Mfn1) or 2 (Mfn2) on adipogenesis in cultured cells.

Methods: We characterised adipocyte differentiation of wildtype (WT), Mfn1-/- and Mfn2-/- mouse embryonic fibroblasts (MEFs) and 3T3-L1 preadipocytes in which Mfn1 or 2 levels were reduced using siRNA.

View Article and Find Full Text PDF

It is crucial to investigate new anti-diabetic agents and therapeutic approaches targeting molecules in potential signaling pathways for the treatment of Type 2 diabetes mellitus (T2DM). The objective of the study was to investigate the total phenolic content, antioxidant capacity, α-glucosidase, and α-amylase inhibitory activities of Bolanthus turcicus (B. turcicus), as well as their cytotoxic, anti-adipogenic, anti-diabetic, apoptotic, and anti-migration potential on adipocytes.

View Article and Find Full Text PDF

Exposure to perfluorooctanoic acid (PFOA) and hexafluoropropylene oxide dimer acid (HFPO-DA) was associated with adipogenesis. However, potential mechanisms remain to be elucidated. Herein, a 3T3-L1 adipocyte model was used to explore the dynamic changes in adipocyte differentiation (2, 4, and 8 days) under PFOA and HFPO-DA exposure.

View Article and Find Full Text PDF

Introduction: The plasma membrane-bound protein, multi-drug resistance-associated protein 4 (), has gained attention for its pivotal role in facilitating the efflux of a wide range of endogenous and xenobiotic molecules. Its significance in adipogenesis and fatty acid metabolism has been brought to light by recent studies. Notably, research on knockout ( ) mice has established a link between the absence of and the development of obesity and diabetes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!