Coordination polymers with metal-sulfur (M-S) bonds in their nodes have interesting optical properties and can be used as photocatalysts for water splitting. A wide range of inorganic-organic hybrid materials with M-S bonds have been prepared in recent years. However, there is a dearth of structural information because of their low crystallinity, which has hampered the understanding of their underlying chemistry and physics. Thus, we conducted a structural study of a novel, highly crystalline coordination polymer with M-S bonds. Theoretical calculations were performed to elucidate its photoconductivity mechanism. The photoconductive, three-dimensional coordination polymer [Pb(tadt)] (denoted as KGF-9; tadt = 1,3,4-thiadiazole-2,5-dithiolate) was synthesized and confirmed to have a three-dimensional structure containing a two-dimensional Pb-S framework by single-crystal X-ray diffraction. We also performed diffuse-reflectance ultraviolet-visible-near-infrared spectroscopy, time-resolved microwave conductivity, and photoelectron yield spectroscopy measurements on the bulk powder samples, as well as first-principles calculations. Additionally, direct-current photoconductivity measurements were conducted on a single-crystal sample.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.0c03801 | DOI Listing |
Dalton Trans
January 2025
Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), Via Piero Gobetti 101, 40129 Bologna, Italy.
Hybrid coordination polimers based on AgX (with X = Cl, Br) and 2-, 3-, 4-picolylamine ligands, obtained by means of solvent-free methods, show peculiar luminescence properties that are strongly influenced by their structural motif, which in turn is defined by the adopted isomer of the ligand. A comprehensive study, combining photophysical methods and DFT calculations, allowed to rationalize the emissive behaviour of such hybrid coordination polymers in relation to their crystal structures and electronic properties. By means of luminescence measurements at variable temperatures, the nature of the emissive excited states and their deactivation dynamics was interpreted, revealing XMLCT transitions in the [(AgX)(2-pica)] compounds, a TADF behaviour in the case of 3-pica derivatives, and a dual emission at room temperature for the [(AgX)(4-pica)] family.
View Article and Find Full Text PDFNanoscale
January 2025
Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Bengaluru 562162, India.
Bifunctional oxygen electrocatalysis is a pivotal process that underpins a diverse array of sustainable energy technologies, including electrolyzers and fuel cells. Metal selenides have been identified as highly promising candidates for oxygen electrocatalysts with electronic structure engineering that lies at the heart of catalyst design. Two-phase Fe-doped nitrogen carbon (NC)-supported nickel selenides were synthesized using a coordination polymer template.
View Article and Find Full Text PDFThe development of materials from renewable resources has been increasing, intending to reduce the consumption of fossil sources, with terpenes being one of the main families that reduce the consumption of isoprene. The study of the binary catalytic system neodymium versatate/dibutyl magnesium (NdV/Mg(-Bu)), for the coordination homopolymerization of β-myrcene and β-farnesene, was carried out analysing different [Nd] : [Mg] ratios (between 4 and 10). Reporting conversions of 92% and 83% at an [Nd] : [Mg] ratio of 8 for polymyrcene (PMy) and polyfarnesene (PFa), respectively, and microstructures comprising 1,4 content above 80% for both polymers (PMy, -59% and PFa, -83%).
View Article and Find Full Text PDFInorg Chem
January 2025
Key Laboratory of Applied Surface and Colloid Chemistry (MOE), School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China.
Fluorescent metal-organic frameworks (MOFs) are promising sensing materials that have received much attention in recent years, in which the organic ligand conformation changes usually lead to variations of their sensing behavior. Based on this, in the present work, perylene diimide (PDI) derivatives with excellent photochemical properties closely related to their conformation and molecule packing fashion were selected as organic linkers to detect sarin simulant diethyl chlorophosphate (DCP). By the coordination interactions with large lanthanide cations through terminal carboxylate groups from the PDI derivative, a series of one-dimensional coordination polymers, named [Ln(PDICl-2COO)(μ-O)(DMF)] (SNNU-112, Ln = Yb/Tb/Sm/Nd/Pr/Gd/Eu/Er/Ce, PDICl-2COOH = ,'-bis(4-benzoic acid)-1,2,6,7-tetrachlorohydrazone-3,4,9,10-tetracarboxylic acid diimide) were synthesized.
View Article and Find Full Text PDFInorg Chem
January 2025
MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
A novel antimonotungstate (AT)-based heterometallic framework {[Er(HO)][Fe(Hpdc)(B-β-SbWO)]}·50HO (, Hpdc = pyridine-2,5-dicarboxylic acid) was obtained through a synergistic strategy of in situ-generated transition-metal-encapsulated polyoxometalate (POM) building units and the substitution reaction. Its structural unit is composed of a tetra-Fe-substituted Krebs-type [Fe(Hpdc)(B-β-SbWO)] subunit and two [Er(HO)] cations. This subunit can be regarded as a product of carboxylic oxygen atoms of Hpdc ligands replacing active water ligands in the [Fe(HO)(B-β-SbWO)] species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!