A technology for systemic and repeated administration of osteogenic factors for orthopedic use is an unmet medical need. Lactoferrin (∼80 kDa), present in milk, is known to support bone growth. We discovered a lactoferrin-mimetic peptide, LP2 (an 18-residue fragment from the N-terminus of the N-lobe of human lactoferrin), which self-assembles into a nano-globular assembly with a β-sheet structure in an aqueous environment. LP2 is non-hemolytic and non-cytotoxic against human red blood cells and 3T3 fibroblasts, respectively, and appreciably stable in the human serum. LP2 through the bone morphogenetic protein-dependent mechanism stimulates osteoblast differentiation more potently than the full-length protein as well as the osteoblastic production of osteoprotegerin (an anti-osteoclastogenic factor). Consequently, daily subcutaneous administration of LP2 to rats and rabbits with osteotomy resulted in faster bone healing and stimulated bone formation in rats with a low bone mass more potently than that with teriparatide, the standard-of-care osteogenic peptide for osteoporosis. LP2 has skeletal bioavailability and is safe at the 15× osteogenic dose. Thus, LP2 is a novel peptide that can be administered systemically for the medical management of hard-to-heal fractures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c01513DOI Listing

Publication Analysis

Top Keywords

human lactoferrin
8
novel peptide
8
bone
6
lp2
6
peptide
5
self-assembling nano-globular
4
nano-globular peptide
4
human
4
peptide human
4
lactoferrin acts
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!