AI Article Synopsis

  • ApoM is an important component of HDL that helps prevent atherosclerosis and is involved in cholesterol transport in mouse macrophages.
  • The study found that ApoM is expressed in macrophages and aids in cholesterol uptake, functioning similarly to the classic receptor SR-BI.
  • ApoM-enriched HDL enhances cholesterol efflux from macrophages, but recombinant human ApoM protein can inhibit this process, suggesting a complex role for ApoM in cholesterol dynamics that could be targeted for new atherosclerosis treatments.

Article Abstract

Apolipoprotein M (ApoM) exhibits various anti-atherosclerotic functions as a component of high-density lipoprotein (HDL) particles. Scavenger receptor class B type I (SR-BI) is a classic HDL receptor that mediates selective cholesterol uptake and enhances the efflux of cellular cholesterol to HDL. However, the effect of ApoM on cholesterol transport in macrophages remains unclear. In this study, we identified for the first time that ApoM is expressed in mouse macrophages and is involved in cholesterol uptake, similar to SR-BI. NBD-cholesterol uptake and efflux in cells were characterized using fluorescence spectrophotometry. The uptake ratios of cholesterol by macrophages from ApoM SR-BI mice were significantly lower than those from ApoM SR-BI and ApoM SR-BI mice. Real-time fluorescence quantitative PCR was used to analyze the expression of cholesterol transport-related genes involved in cholesterol uptake. ApoM-enriched HDL (ApoM HDL) facilitated more cholesterol efflux from murine macrophage Ana-1 cells than ApoM-free HDL (ApoM HDL). However, recombinant human ApoM protein inhibited the ability of ApoM HDL to induce cholesterol efflux. In conclusion, ApoM promotes cholesterol uptake and efflux in mouse macrophages. A better understanding of ApoM function may lead to the development of novel therapeutic strategies for treating atherosclerotic diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8167864PMC
http://dx.doi.org/10.1002/2211-5463.13157DOI Listing

Publication Analysis

Top Keywords

cholesterol uptake
20
uptake efflux
12
mouse macrophages
12
apom
12
hdl apom
12
apom sr-bi
12
apom hdl
12
cholesterol
11
promotes cholesterol
8
efflux mouse
8

Similar Publications

Chronic stress-induced cholesterol metabolism abnormalities promote ESCC tumorigenesis and predict neoadjuvant therapy response.

Proc Natl Acad Sci U S A

February 2025

Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China.

Recent studies have demonstrated that chronic stress can enhance the development of multiple human diseases, including cancer. However, the role of chronic stress in esophageal carcinogenesis and its underlying molecular mechanisms remain unclear. This study uncovered that dysregulated cholesterol metabolism significantly promotes esophageal carcinogenesis under chronic stress conditions.

View Article and Find Full Text PDF

Introduction: HIV-1 exploits dendritic cells (DCs) to spread throughout the body via specific recognition of gangliosides present on the viral envelope by the CD169/Siglec-1 membrane receptor. This interaction triggers the internalization of HIV-1 within a structure known as the sac-like compartment. While the mechanism underlying sac-like compartment formation remains elusive, prior research indicates that the process is clathrin-independent and cell membrane cholesterol-dependent and involves transient disruption of cortical actin.

View Article and Find Full Text PDF

A novel exercise protocol for cardiac rehabilitation aerobic (CRA) has been developed by Hebei Sport University, demonstrating efficacy in patients with coronary heart disease (CHD). The objective of this study was to evaluate the impact of CRA on precise cardiac rehabilitation (CR) for CHD patients presenting with stable angina pectoris. The study cohort comprised patients with stable angina who were categorized into three groups: the CRA group (n = 35), the power bicycles (PB) group (n = 34), and the control group (n = 43).

View Article and Find Full Text PDF

: Bempedoic acid (BA) is a novel cholesterol-lowering agent with proven positive effects on cardiovascular endpoints. Because it is an inhibitor of the hepatic transporters OATP1B1 and OATP1B3, two uptake transporters regulating the intrahepatic availability of statins, it increases the systemic exposure of co-administered statins. This interaction could raise the risk of myopathy.

View Article and Find Full Text PDF

: Previous studies suggest that there is a genetically determined component of fat oxidation at rest and during exercise. To date, the gene has been proposed as a candidate gene to affect fat oxidation during exercise because of the association of the "at-risk" A allele with different obesity-related factors such as increased body fat, higher appetite and elevated insulin and triglyceride levels. The A allele of the gene may also be linked to obesity through a reduced capacity for fat oxidation during exercise, a topic that remains largely underexplored in the current literature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!