Background: CD248 is a pro-inflammatory, transmembrane glycoprotein expressed by vascular smooth muscle cells (VSMC), monocytes/macrophages, and other cells of mesenchymal origin. Its distribution and properties are reminiscent of those of the initiator of coagulation, tissue factor (TF).

Objective: We examined whether CD248 also participates in thrombosis.

Methods: We evaluated the role of CD248 in coagulation using mouse models of vascular injury, and by assessing its functional interaction with the TF-factor VIIa (FVIIa)-factor X (FX) complex.

Results: The time to ferric chloride-induced occlusion of the carotid artery in CD248 knockout (KO) mice was significantly longer than in wild-type (WT) mice. In an inferior vena cava (IVC) stenosis model of thrombosis, lack of CD248 conferred relative resistance to thrombus formation compared to WT mice. Levels of circulating cells and coagulation factors, prothrombin time, activated partial thromboplastin time, and tail bleeding times were similar in both groups. Proximity ligation assays revealed that TF and CD248 are <40 nm apart, suggesting a potential functional relationship. Expression of CD248 by murine and human VSMCs, and by a monocytic cell line, significantly augmented TF-FVIIa-mediated activation of FX, which was not due to differential expression or encryption of TF, altered exposure of phosphatidylserine or differences in tissue factor pathway inhibitor expression. Rather, conformation-specific antibodies showed that CD248 induces allosteric changes in the TF-FVIIa-FX complex that facilitates FX activation by TF-FVIIa.

Conclusion: CD248 is a newly uncovered protein partner and potential therapeutic target in the TF-FVIIa-FX macromolecular complex that modulates coagulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8571649PMC
http://dx.doi.org/10.1111/jth.15338DOI Listing

Publication Analysis

Top Keywords

tissue factor
8
mouse models
8
cd248
7
cd248 enhances
4
enhances tissue
4
factor procoagulant
4
procoagulant function
4
function promoting
4
promoting arterial
4
arterial venous
4

Similar Publications

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

Introduction/objectives: Sjogren's syndrome (SS) is a chronic inflammatory and difficult-to-treat autoimmune disease. Timosaponin AIII (TAIII), a plant-derived steroidal saponin, effectively inhibits cell proliferation, induces apoptosis, and exhibits anti-inflammatory properties. This study explored the mechanisms of action of TAIII in SS treatment by studying gut microbiota and short-chain fatty acids (SCFAs) using fecal metabolomics.

View Article and Find Full Text PDF

∆-Tetrahydrocannabinol Increases Growth Factor Release by Cultured Adipose Stem Cells and Adipose Tissue in vivo.

Tissue Eng Regen Med

January 2025

Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.

Background: Because of its biocompatibility and its soft and dynamic nature, the grafting of adipose tissue is regarded an ideal technique for soft-tissue repair. The adipose stem cells (ASCs) contribute significantly to the regenerative potential of adipose tissue, because they can differentiate into adipocytes and release growth factors for tissue repair and neovascularization to facilitate tissue survival. The present study tested the effect of administering a chronic low dose of ∆-tetrahydrocannabinol (THC) on these regenerative properties, in vitro and in vivo.

View Article and Find Full Text PDF

This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.

View Article and Find Full Text PDF

HIF-1 and HIF-2 in cancer: structure, regulation, and therapeutic prospects.

Cell Mol Life Sci

January 2025

Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Hypoxia, or a state of low tissue oxygenation, has been characterized as an important feature of solid tumors that is related to aggressive phenotypes. The cellular response to hypoxia is controlled by Hypoxia-inducible factors (HIFs), a family of transcription factors. HIFs promote the transcription of gene products that play a role in tumor progression including proliferation, angiogenesis, metastasis, and drug resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!