In Colombia, identification of entomopathogenic nematodes (EPN's) native species is of great importance for pest management programs. The aim of this study was to isolate and identify EPNs and their bacterial symbiont in the department of Cauca-Colombia and then evaluate the susceptibility of two Hass avocado () pests to the EPNs isolated. EPNs were isolated from soil samples by the insect baiting technique. Their bacterial symbiont was isolated from hemolymph of infected larvae. Both organisms were molecularly identified. Morphological, and biochemical characterization was done for the bacteria. Susceptibility of and adults was evaluated by individually exposing adults to 50 infective juveniles. EPNs were allegedly detected at two sampled sites (natural forest and coffee cultivation) in 5.8% of the samples analyzed. However, only natural forest EPN's could be isolated and multiplied. The isolate was identified as BPS and its bacterial symbiont as BPS. Adults of both pests were susceptible to indicating this EPN potential for its management. The results of this study constitute the first record of in Colombia and the susceptibility of to this EPN.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8015356 | PMC |
http://dx.doi.org/10.21307/jofnem-2020-089 | DOI Listing |
Appl Environ Microbiol
January 2025
CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
Sexual reproduction and recruitment enhance the genetic diversity and evolution of reef-building corals for population recovery and coral reef conservation under climate change. However, new recruits are vulnerable to physical changes and the mechanisms of symbiosis establishment remain poorly understood. Here, , a broadcast spawning hermaphrodite reef-building coral, was subjected to settlement and juvenile growth in flow-through seawater at 27.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Department of Biology, University of Oxford, Oxford, UK.
Rhizobia and legumes form a symbiotic relationship resulting in the formation of root structures known as nodules, where bacteria fix nitrogen. Legumes release flavonoids that are detected by the rhizobial nodulation (Nod) protein NodD, initiating the transcriptional activation of nod genes and subsequent synthesis of Nod Factors (NFs). NFs then induce various legume responses essential for this symbiosis.
View Article and Find Full Text PDFMicroorganisms
December 2024
Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 384 46 Volos, Greece.
The introduction of the holobiont concept has triggered scientific interest in depicting the structural and functional diversity of animal microbial symbionts, which has resulted in an unprecedented wealth of such cross-domain biological associations. The steadfast technological progress in nucleic acid-based approaches would cause one to expect that scientific works on the microbial symbionts of animals would be balanced at least for the farmed animals of human interest. For some animals, such as ruminants and a few farmed fish species of financial significance, the scientific wealth of the microbial worlds they host is immense and ever growing.
View Article and Find Full Text PDFCrit Rev Biotechnol
January 2025
Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, P.R. China.
The convoluted relationships between plants, viruses, and arthropod vectors housing bacterial endosymbionts are pivotal in the spread of harmful plant viral diseases. Endosymbionts play key roles in: manipulating host responses, influencing insect resistance to pesticides, shaping insect evolution, and bolstering virus acquisition, retention, and transmission. This interplay presents an innovative approach for developing sustainable strategies to manage plant diseases.
View Article and Find Full Text PDFSyst Biol
January 2025
Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.
Obtaining a timescale for bacterial evolution is crucial to understand early life evolution but is difficult owing to the scarcity of bacterial fossils. Here, we introduce multiple new time constraints to calibrate bacterial evolution based on ancient symbiosis. This idea is implemented using a bacterial tree constructed with genes found in the mitochondrial lineages phylogenetically embedded within Proteobacteria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!