Wireless Powered Encoding and Broadcasting of Frequency Modulated Detection Signals.

IEEE Access

Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA.

Published: November 2020

Wireless transmission of locally detected RF signals is necessary for long-term operation of batteryless and embedded transducers. To improve signal transmission efficiency over larger distances, multi-stage circuits were employed to down-convert RF signals before encoding them onto the emitted carrier wave. Such multi-stage arrangement had complicated design and high-power consumption. Here, a compact and low-power wireless modulator is introduced to directly encode input RF signals onto its oscillation carrier wave. The modulator consists of a double frequency parametric resonator that is overlaid with a single frequency passive resonator to create three resonance modes. By properly adjusting the substrate thickness between resonators, the highest resonance frequency is tuned to approximately the sum of lower two resonance frequencies, enabling efficient conversion of wireless pumping power into sustained oscillation currents. When an input RF signal is present with a certain frequency offset, the oscillation signal can be frequency modulated by the input signal to create multiple modulation sidebands separated by the offset frequency. The frequency encoded carrier wave can transmit MRI signals over larger distance separations to maintain constant image sensitivity, making the modulator useful to improve the remote detectability of miniaturized implantable and interventional devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8023641PMC
http://dx.doi.org/10.1109/access.2020.3035938DOI Listing

Publication Analysis

Top Keywords

carrier wave
12
frequency
8
frequency modulated
8
input signal
8
signal frequency
8
signals
5
wireless
4
wireless powered
4
powered encoding
4
encoding broadcasting
4

Similar Publications

Reducing Nonradiative Recombination in Halide Perovskites through Appropriate Band Gaps and Heavy Atomic Masses.

J Phys Chem Lett

January 2025

State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.

Halide perovskite optoelectronic devices achieve high energy conversion efficiencies. However, their efficiency decreases significantly with an increase in temperature. This decline is likely caused by changes in nonradiative recombination and electron-phonon coupling, which remain underexplored.

View Article and Find Full Text PDF

Cerebral Microbleeds and Amyloid Pathology Estimates From the Amyloid Biomarker Study.

JAMA Netw Open

January 2025

Alzheimer Center Limburg, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.

Importance: Baseline cerebral microbleeds (CMBs) and APOE ε4 allele copy number are important risk factors for amyloid-related imaging abnormalities in patients with Alzheimer disease (AD) receiving therapies to lower amyloid-β plaque levels.

Objective: To provide prevalence estimates of any, no more than 4, or fewer than 2 CMBs in association with amyloid status, APOE ε4 copy number, and age.

Design, Setting, And Participants: This cross-sectional study used data included in the Amyloid Biomarker Study data pooling initiative (January 1, 2012, to the present [data collection is ongoing]).

View Article and Find Full Text PDF

Improving the sensitivity of biosensor has always the major challenge to measure lower detection concentration of biological samples. In this paper, a novel optical fiber surface plasmon resonance (SPR) biosensor based on TiC MXene/GNRs synergistically highly enhanced sensitivity was proposed. The TiC MXene and GNRs were coated on the optical fiber sensing probe by the electrostatic layer-by-layer (ELBL) assembly method.

View Article and Find Full Text PDF

Two-dimensional (2D) organic-inorganic halide perovskites are promising sensitive materials for optoelectronic applications due to their strong light-matter interactions, layered structure, long carrier lifetime and diffusion length. However, a high gate bias is indispensable for perovskite-based phototransistors to optimize detection performances, since ion migration seriously screens the gate electric field and the deposition process introduces intrinsic defects, which induces severe leakages and large power dissipation. In this work, an ultrasensitive phototransistor based on the (PEA)SnI perovskite and the Al:HfO ferroelectric layer is meticulously studied, working without an external gate voltage.

View Article and Find Full Text PDF

The largest risk factor for dementia is age. Heterochronic blood exchange studies have uncovered age-related blood factors that demonstrate 'pro-aging' or 'pro-youthful' effects on the mouse brain. The clinical relevance and combined effects of these factors for humans is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!