Analysis of the Performance of Narrow-Bandgap Organic Solar Cells Based on a Diketopyrrolopyrrole Polymer and a Nonfullerene Acceptor.

J Phys Chem C Nanomater Interfaces

Molecular Materials and Nanosystems & Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands.

Published: March 2021

The combination of narrow-bandgap diketopyrrolopyrrole (DPP) polymers and nonfullerene acceptors (NFAs) seems well-matched for solar cells that exclusively absorb in the near infrared but they rarely provide high efficiency. One reason is that processing of the active layer is complicated by the fact that DPP-based polymers are generally only sufficiently soluble in chloroform (CF), while NFAs are preferably processed from halogenated aromatic solvents. By using a ternary solvent system consisting of CF, 1,8-diiodooctane (DIO), and chlorobenzene (CB), the short-circuit current density is increased by 50% in solar cells based on a DPP polymer (PDPP5T) and a NFA (IEICO-4F) compared to the use of CF with DIO only. However, the open-circuit voltage and fill factor are reduced. As a result, the efficiency improves from 3.4 to 4.8% only. The use of CB results in stronger aggregation of IEICO-4F as inferred from two-dimensional grazing-incidence wide-angle X-ray diffraction. Photo- and electroluminescence and mobility measurements indicate that the changes in performance can be ascribed to a more aggregated blend film in which charge generation is increased but nonradiative recombination is enhanced because of reduced hole mobility. Hence, while CB is essential to obtain well-ordered domains of IEICO-4F in blends with PDPP5T, the morphology and resulting hole mobility of PDPP5T domains remain suboptimal. The results identify the challenges in processing organic solar cells based on DPP polymers and NFAs as near-infrared absorbing photoactive layers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8016210PMC
http://dx.doi.org/10.1021/acs.jpcc.0c11377DOI Listing

Publication Analysis

Top Keywords

solar cells
16
cells based
12
organic solar
8
dpp polymers
8
based dpp
8
hole mobility
8
analysis performance
4
performance narrow-bandgap
4
narrow-bandgap organic
4
solar
4

Similar Publications

Recent advances in the development of enantiopure BODIPYs and some related enantiomeric compounds.

Chem Commun (Camb)

January 2025

Department of Chemistry, Khalifa University, SAN Campus, Abu Dhabi, United Arab Emirates.

During the process of developing smart chiroptical luminophores, small chiral organic dyes have emerged as candidates of utmost importance. In this regard, the chiral variants of boron dipyrromethene (BODIPY) serve as suitable molecules owing to their excellent photophysical properties such as high fluorescence quantum yields, narrow emission bandwidths with high peak intensities, high photo and chemical stability, and higher molar extinction coefficients. Thus, the last decade observed an influx of research from various research groups for the induction of chirality in originally achiral BODIPY.

View Article and Find Full Text PDF

Indium (In) reduction is a hot topic in transparent conductive oxide (TCO) research. So far, most strategies have been focused on reducing the layer thickness of In-based TCO films and exploring TCOs. However, no promising industrial solution has been obtained yet.

View Article and Find Full Text PDF

The advancement of tin-based perovskite solar cells (TPSCs) has been severely hindered by the poor controllability of perovskite crystal growth and the energy level mismatch between the perovskite and fullerene-based electron transport layer (ETL). Here, we synthesized three cis-configured pyridyl-substituted fulleropyrrolidines (PPF), specifically 2-pyridyl (PPF2), 3-pyridyl (PPF3), and 4-pyridyl (PPF4), and utilized them as precursor additives to regulate the crystallization kinetics during film formation. The spatial distance between the two pyridine groups in PPF2, PPF3, and PPF4 increases sequentially, enabling PPF4 to interact with more perovskite colloidal particles.

View Article and Find Full Text PDF

P-Dopant with Spherical Anion for Stable n-i-p Perovskite Solar Cells.

Angew Chem Int Ed Engl

January 2025

EPFL: Ecole Polytechnique Federale de Lausanne, Department of Chemistry, Rue de Industries 17, 1050, Sion, SWITZERLAND.

Li-TFSI/t-BP is the most widely utilized p-dopant for hole-transporting materials (HTMs) in state-of-the-art perovskite solar cells (PSCs). However, its nonuniformity of doping, along with the hygroscopicity and migration of dopants, results in the devices that exhibit limited stability and performance. This study reports the use of a spherical anion of the p-dopant, regulated by its radius and shape, as an alternative to the linear TFSI- anion.

View Article and Find Full Text PDF

Perovskite/silicon tandem solar cells (TSCs) are promising candidates for commercialization due to their outstanding power conversion efficiencies (PCEs). However, controlling the crystallization process and alleviating the phases/composition inhomogeneity represent a considerable challenge for perovskite layers grown on rough silicon substrates, ultimately limiting the efficiency and stability of TSC. Here, this study reports a "halide locking" strategy that simultaneously modulates the nucleation and crystal growth process of wide bandgap perovskites by introducing a multifunctional ammonium salt, thioacetylacetamide hydrochloride (TAACl), to bind with all types of cations and anions in the mixed halide perovskite precursor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!