The opioid crisis has hit American cities hard, and research on spatial and temporal patterns of drug-related activities including detecting and predicting clusters of crime incidents involving particular types of drugs is useful for distinguishing hot zones where drugs are present that in turn can further provide a basis for assessing and providing related treatment services. In this study, we investigated spatiotemporal patterns of more than 52,000 reported incidents of drug-related crime at block group granularity in Chicago, IL between 2016 and 2019. We applied a space-time analysis framework and machine learning approaches to build a model using training data that identified whether certain locations and built environment and sociodemographic factors were correlated with drug-related crime incident patterns, and establish the top contributing factors that underlaid the trends. Space and time, together with multiple driving factors, were incorporated into a random forest model to analyze these changing patterns. We accommodated both spatial and temporal autocorrelation in the model learning process to assist with capturing the changes over time and tested the capabilities of the space-time random forest model by predicting drug-related activity hot zones. We focused particularly on crime incidents that involved heroin and synthetic drugs as these have been key drug types that have highly impacted cities during the opioid crisis in the U.S.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8021089PMC
http://dx.doi.org/10.1016/j.compenvurbsys.2021.101599DOI Listing

Publication Analysis

Top Keywords

random forest
12
drug-related crime
12
crime incidents
12
space time
8
patterns drug-related
8
opioid crisis
8
spatial temporal
8
hot zones
8
forest model
8
patterns
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!