With the development of massive parallel sequencing technology, it has become easier to establish new model organisms that are ideally suited to the specific biological phenomena of interest. Considering the history of research using classical model organisms, we believe that the efficient construction and sharing of gene mutation libraries will facilitate the progress of studies using these new model organisms. Using C. elegans, we applied the TMP/UV mutagenesis method to animals lacking function in the DNA damage response genes atm-1 and xpc-1. This method produces genetic mutations three times more efficiently than mutagenesis of wild-type animals. Furthermore, we confirmed that the use of next-generation sequencing and the elimination of false positives through machine learning could automate the process of mutation identification with an accuracy of over 95%. Eventually, we sequenced the whole genomes of 488 strains and isolated 981 novel mutations generated by the present method; these strains have been made available to anyone who wants to use them. Since the targeted DNA damage response genes are well conserved and the mutagens used in this study are also effective in a variety of species, we believe that our method is generally applicable to a wide range of animal species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8027614PMC
http://dx.doi.org/10.1038/s41598-021-87226-7DOI Listing

Publication Analysis

Top Keywords

dna damage
12
damage response
12
model organisms
12
response genes
8
efficient collection
4
collection large
4
large number
4
number mutations
4
mutations mutagenesis
4
mutagenesis dna
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!