Central Taiwan is among the most heavily polluted regions in Taiwan because of a complex mixing of local emissions from intense anthropogenic activities with natural dust. Long-range transport (LRT) of pollutants from outside Taiwan also contributes critically to the deterioration of air quality, especially during the northeast monsoon season. To identify the sources of particulate matter < 10 μm (PM) in central Taiwan, this study performed several sampling campaigns, including three local events, one LRT event, and one dust storm event, during the northeast monsoon season of 2018/2019. The PM samples were analyzed for water-soluble ion and trace metal concentrations as well as Pb isotope ratios. Local sediments were also collected and analyzed to constrain chemical/isotopic signatures of natural sources. The Pb isotope data were interpreted together with the enrichment factors and elemental ratios of trace metals in PM, and reanalysis data sets were used to delineate the sources of PM in central Taiwan. Our results suggested that Pb in PM was predominantly contributed by oil combustion and oil refineries during the local events (48-88%), whereas the lowest contributions were from coal combustion (< 21%). During periods of high wind speed, the contribution from natural sources increased significantly from 13 to 31%. Despite Pb represented only a small portion of PM, a strong correlation (r = 0.89, p  < 0.001, multiple regression analysis) between PM mass and the concentrations of Pb, V, and Al was observed in the study area, suggesting that the sources of PM in central Taiwan can be possibly tracked by using chemical characteristics and Pb isotopes in PM. Moreover, the Pb isotopic signals of PM collected during the LRT event confirmed the impact of LRT from Mainland China, and the chemical characteristics of the PM significantly differed from those of the PM collected during local events. This study demonstrates the robustness of using a combination of Pb isotopic compositions and chemical characteristics in PM for source tracing in complex and heavily polluted areas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8026966PMC
http://dx.doi.org/10.1038/s41598-021-87051-yDOI Listing

Publication Analysis

Top Keywords

long-range transport
8
central taiwan
8
tracing local
4
local sources
4
sources long-range
4
transport central
4
taiwan
4
taiwan chemical
4
chemical characteristics
4
characteristics isotope
4

Similar Publications

Tracking Boats on Amazon Rivers-A Case Study with the LoRa/LoRaWAN.

Sensors (Basel)

January 2025

Electronic and Information Technology Research and Development Center (CETELI), Federal University of Amazonas, Manaus 69067-005, AM, Brazil.

The Amazon region has the largest hydrographic basin in the world. The rivers act as roads, and boats serve as vehicles for transporting passengers and cargo to large urban centers, municipalities, riverside communities, villages, and settlements. The Amazon River transportation system faces critical gaps due to the lack of land infrastructure in certain areas, which makes rivers essential for commerce and access to isolated communities.

View Article and Find Full Text PDF

Accelerated photooxidation of salicylic acid (SA) was performed using UV radiation and hydrogen peroxide. HPLC-MS analysis showed that the primary intermediates are 2,5-dihydroxybenzoic acid, 2,3-dihydroxybenzoic acid, pyrocatechol, and phenol. Deeper oxidation leads to low molecular weight aliphatic acids, such as maleic, fumaric, and glyoxylic.

View Article and Find Full Text PDF

This study examines how southern wintering areas may contribute to organochlorine (OCs) loads in arctic seabirds during breeding. Light-sensitive geolocators (GLS loggers) were deployed on Arctic skuas (Stercorarius parasiticus) in one high arctic and two subarctic colonies. Hexcahlorobenzene (HCB), Chlordanes, Mirex, p, p'-dichlorodiphenyldichloro- ethylene (p, p'-DDE), and Polychlorinated biphenyls (PCBs) were measured in the blood of breeding adults at the nest (58 individuals, a total of 128 samples) in northern Norway and Svalbard between 2009 and 2015.

View Article and Find Full Text PDF

Ribonucleotide reductase (RNR) is essential for DNA synthesis and repair in all living organisms. The mechanism of RNR requires long-range radical transport through a proton-coupled electron transfer (PCET) pathway spanning two different protein subunits. Herein, the direct PCET reaction between the interfacial tyrosine residues, Y356 and Y731, is investigated with a vibronically nonadiabatic theory that treats the transferring proton and all electrons quantum mechanically.

View Article and Find Full Text PDF

Long-range exciton transport is crucial for optoelectronic devices based on organic semiconductors, but the method for increasing and regulating the exciton transport rate in organic semiconductors is still underexplored. Here we have achieved rapid-transporting excitons in organic crystals assembled of difluoroboron β-diketonate (BCZ) and found that the exciton transport rate of BCZ crystals can be regulated by the molecular packing form. Using transient absorption microscopy, we find that the BCZ-Y crystal in which BCZ molecules experience uniform head-to-tail antiparallel molecular packing has anisotropic long-range exciton transport.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!