CoFeMnSi (CFMS) and CoFeGaGe (CFGG) Heusler alloys are among the most promising thin film materials for spintronic devices due to a high spin polarization, low magnetic damping and giant/tunneling magnetoresistance ratios. Despite numerous investigations of Heusler alloys magnetic properties performed up to now, magnetoelastic effects in these materials remain not fully understood; due to quite rare studies of correlations between magnetoelastic and other magnetic properties, such as magnetic dissipation or magnetic anisotropy. In this research we have investigated epitaxial CFMS and CFGG Heusler alloys thin films of thickness in the range of 15-50 nm. We have determined the magnetoelastic tensor components and magnetic damping parameters as a function of the magnetic layer thickness. Magnetic damping measurements revealed the existence of non-Gilbert dissipation related contributions, including two-magnon scattering and spin pumping phenomena. Magnetoelastic constant B values and the effective magnetic damping parameter α values were found to be in the range of - 6 to 30 × 10 erg/cm and between 1 and 12 × 10, respectively. The values of saturation magnetostriction λ for CFMS Heusler alloy thin films were also obtained using the strain modulated ferromagnetic resonance technique. The correlation between α and B, depending on magnetic layer thickness was determined based on the performed investigations of the above mentioned magnetic properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8027465PMC
http://dx.doi.org/10.1038/s41598-021-87205-yDOI Listing

Publication Analysis

Top Keywords

magnetic damping
20
heusler alloys
16
magnetic
12
thin films
12
magnetic properties
12
alloys thin
8
cfgg heusler
8
magnetic layer
8
layer thickness
8
magnetoelastic
5

Similar Publications

The coherent spin waves, magnons, can propagate without accompanying charge transports and Joule heat dissipation. Room-temperature and long-distance spin waves propagating within nanoscale spin channels are considered promising for integrated magnonic applications, but experimentally challenging. Here we report that long-distance propagation of chiral magnonic edge states can be achieved at room temperature in manganite thin films with long, antiferromagnetically coupled spin spirals (millimetre length) and low magnetic Gilbert damping (~3.

View Article and Find Full Text PDF

Spin-Orbit Torque (SOT) Magnetic Random-Access Memory (MRAM) devices offer improved power efficiency, nonvolatility, and performance compared to static RAM, making them ideal, for instance, for cache memory applications. Efficient magnetization switching, long data retention, and high-density integration in SOT MRAM require ferromagnets (FM) with perpendicular magnetic anisotropy (PMA) combined with large torques enhanced by Orbital Hall Effect (OHE). We have engineered a PMA [Co/Ni] FM on selected OHE layers (Ru, Nb, Cr) and investigated the potential of theoretically predicted larger orbital Hall conductivity (OHC) to quantify the torque and switching current in OHE/[Co/Ni] stacks.

View Article and Find Full Text PDF

Direct-drive servo systems are extensively applied in biomimetic robotics and other bionic applications, but their performance is susceptible to uncertainties and disturbances. This paper proposes an adaptive disturbance rejection Zeta-backstepping control scheme with adjustable damping ratios to enhance system robustness and precision. An iron-core permanent magnet linear synchronous motor (PMLSM) was employed as the experimental platform for the development of a dynamic model that incorporates compensation for friction and cogging forces.

View Article and Find Full Text PDF

Enhancement of Harmonic Heating by Magnetized Plasma Series Resonance in Capacitive Radio Frequency Discharges.

Phys Rev Lett

December 2024

Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China.

We present a novel resonance mode in capacitive radio frequency (rf) discharges in the presence of an oblique magnetic field at low pressures. We observe the self-excitation of high-frequency harmonics of the current in magnetized capacitive rf discharges through the magnetized plasma series resonance (MPSR) induced by applying a low-frequency power. Utilizing an equivalent circuit model, we reveal that these harmonics arise from the hybrid combination of the magnetic gyration of electrons and the PSR.

View Article and Find Full Text PDF

The contributions of relative brain viscosity to brain function and health.

Brain Commun

December 2024

Department of Biomedical Engineering, College of Engineering and Applied Sciences, Columbia University, New York, NY 10027, USA.

Magnetic resonance elastography has emerged over the last two decades as a non-invasive method for quantitatively measuring the mechanical properties of the brain. Since the inception of the technology, brain stiffness has been the primary metric used to describe brain microstructural mechanics. However, more recently, a secondary measure has emerged as both theoretical and experimental significance, which is the ratio of tissue viscosity relative to tissue elasticity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!