Bacteriophages are bacterial viruses and the most abundant biological entities on Earth. Temperate bacteriophages can form prophages stably maintained in the host population: they either integrate into the host genome or replicate as plasmids in the host cytoplasm. As shown, tailed temperate bacteriophages may form circular plasmid prophages in many bacterial species of the taxa Firmicutes, Gammaproteobacteria and Spirochaetes. The actual number of such prophages is thought to be underestimated for two main reasons: first, in bacterial whole genome-sequencing assemblies, they are difficult to distinguish from actual plasmids; second, there is an absence of experimental studies which are vital to confirm their existence. In Firmicutes, such prophages appear to be especially numerous. In the present study, we identified 23 genomes from species of the Bacillus cereus group that were deposited in GenBank as plasmids and may belong to plasmid prophages with little or no homology to known viruses. We consider these putative prophages worth experimental assays since it will broaden our knowledge of phage diversity and suggest that more attention be paid to such molecules in all bacterial sequencing projects as this will help in identifying previously unknown phages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8026635 | PMC |
http://dx.doi.org/10.1038/s41598-021-87111-3 | DOI Listing |
Front Microbiol
December 2024
Meat Safety and Quality Research Unit, U.S. Department of Agriculture, U.S. Meat Animal Research Center, Clay Center, NE, United States.
Recent application of whole genome sequencing in the investigation of foodborne illness outbreaks has facilitated the identification of Reoccurring, Emerging, or Persistent (REP) bacterial strains that have caused illnesses over extended periods of time. Here, the complete genomes of two O157:H7 (EcO157) outbreak strains belonging to REPEXH01 and REPEXH02, respectively, were sequenced and annotated. Comparative genomics and phenotypic analyses were carried out to identify REP-associated traits.
View Article and Find Full Text PDFSci Total Environ
December 2024
CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
This study investigated the potential role of phages in the dissemination of antimicrobial resistance genes (ARGs) and virulence factor genes (VFGs) in Escherichia coli (E. coli). A comprehensive in silico analysis of 18,410 phage sequences retrieved from the National Center for Biotechnology Information database (NCBI) revealed distinct carriage patterns for ARGs and VFGs between lytic, temperate, and chronic phage types.
View Article and Find Full Text PDFVirulence
December 2025
Department of Infectious Diseases, Univ Rouen Normandie, Université de Caen Normandie, INSERM, Normandie Univ, DYNAMICURE UMR 1311, CHU Rouen, Rouen, France.
Specific determinants associated with Uropathogenic (UPEC) causing recurrent cystitis are still poorly characterized. Using strains from a previous clinical study (Vitale study, clinicaltrials.gov, identifier NCT02292160) the aims of this study were (i) to describe genomic and phenotypic traits associated with recurrence using a large collection of recurrent and paired sporadic UPEC isolates and (ii) to explore within-host genomic adaptation associated with recurrence using series of 2 to 5 sequential UPEC isolates.
View Article and Find Full Text PDFBMC Microbiol
December 2024
College of Agriculture and Forestry, Linyi University, Linyi, Shandong, 276005, China.
Multidrug-resistant (MDR) Acinetobacter baumannii (A. baumannii) is currently recognized not only as a significant nosocomial pathogen but also is an emerging bacterial infection in food-producing animals, posing a critical threat to global health. However, this is a hindrance to detailed bioinformatic studies of MDR A.
View Article and Find Full Text PDFAdjuvant therapy with bacteriophage (phage) cocktails in combination with antibiotics is a therapeutic approach currently considered for treatment of infections with encapsulated, biofilm forming, and multidrug-resistant Klebsiella pneumoniae (Kp). Klebsiella phage are highly selective in targeting a bacterial capsule type. Considering the numerous Kp capsule types and other host restriction factors, phage treatment could be facilitated when generating phages with a broad host range.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!