Metabolic capabilities mute positive response to direct and indirect impacts of warming throughout the soil profile.

Nat Commun

Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

Published: April 2021

Increasing global temperatures are predicted to stimulate soil microbial respiration. The direct and indirect impacts of warming on soil microbes, nevertheless, remain unclear. This is particularly true for understudied subsoil microbes. Here, we show that 4.5 years of whole-profile soil warming in a temperate mixed forest results in altered microbial community composition and metabolism in surface soils, partly due to carbon limitation. However, microbial communities in the subsoil responded differently to warming than in the surface. Throughout the soil profile-but to a greater extent in the subsoil-physiologic and genomic measurements show that phylogenetically different microbes could utilize complex organic compounds, dampening the effect of altered resource availability induced by warming. We find subsoil microbes had 20% lower carbon use efficiencies and 47% lower growth rates compared to surface soils, which constrain microbial communities. Collectively, our results show that unlike in surface soils, elevated microbial respiration in subsoils may continue without microbial community change in the near-term.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8027381PMC
http://dx.doi.org/10.1038/s41467-021-22408-5DOI Listing

Publication Analysis

Top Keywords

surface soils
12
direct indirect
8
indirect impacts
8
impacts warming
8
warming soil
8
microbial respiration
8
subsoil microbes
8
microbial community
8
microbial communities
8
microbial
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!