A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Impact of Incubation Conditions on In Vitro Phosphatidylcholine Deposition on Contact Lens Materials. | LitMetric

The Impact of Incubation Conditions on In Vitro Phosphatidylcholine Deposition on Contact Lens Materials.

Optom Vis Sci

Centre for Ocular Research & Education, School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada.

Published: April 2021

Significance: Previous in vitro measurements of contact lenses commonly investigate the impact of nonpolar tear film lipids (i.e., sterols). Polar lipids, however, are equally important stabilizing components of the tear film. This research explores and presents further knowledge about various aspects of polar lipid uptake that may impact contact lens performance.

Purpose: This study evaluated the impact of incubation time, lipid concentration, and replenishment of an artificial tear solution (ATS) on the uptake of phosphatidylcholine (PC) onto conventional hydrogel (CH) and silicone hydrogel (SH) contact lens materials.

Methods: Four SHs and two CH lens materials (n = 4) were soaked in a complex ATS containing radioactive 14C-PC as a probe molecule. Phosphatidylcholine uptake was monitored at various incubation time points (1, 3, 7, 14, and 28 days), with different ATS lipid concentrations (0.5×, 1×, 2×) and with and without regular replenishment of the ATS. Phosphatidylcholine was extracted from the lenses, processed, and counted by a β counter, and accumulated PC (μg/lens) was extrapolated from standard lipid calibration curves.

Results: All materials exhibited increasing PC deposition over time. Conventional hydrogel materials showed significantly lower PC uptake rates (P < .001) than any of the SH materials. Increasing lipid concentration in the ATS resulted in increased PC binding onto the contact lens materials (P < .001). Replenishing the ATS every other day, however, impacted the PC deposition differently, showing increased binding (P < .001) on CHs and reduced PC deposition for SH materials (P < .001).

Conclusions: Length of incubation, lipid concentration in the ATS, and renewal of the incubation solution all influenced the amount of PC that sorbed onto various lens materials and therefore need to be considered when conducting future in vitro deposition studies.

Download full-text PDF

Source
http://dx.doi.org/10.1097/OPX.0000000000001680DOI Listing

Publication Analysis

Top Keywords

contact lens
16
lens materials
16
lipid concentration
12
impact incubation
8
materials
8
tear film
8
incubation time
8
conventional hydrogel
8
concentration ats
8
increased binding
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!