During viral infection, the dynamic virus-host relationship is constantly in play. Many cellular proteins, such as RNA-binding proteins (RBPs), have been shown to mediate antiviral responses during viral infection. Here, we report that the RBP FUS/TLS (fused in sarcoma/translocated in liposarcoma) acts as a host-restricting factor against infection with coxsackievirus B3 (CVB3). Mechanistically, we found that deletion of FUS leads to increased viral RNA transcription and enhanced internal ribosome entry site (IRES)-driven translation, with no apparent impact on viral RNA stability. We further demonstrated that FUS physically interacts with the viral genome, which may contribute to direct inhibition of viral RNA transcription/translation. Moreover, we identified a novel function for FUS in regulating host innate immune response. We show that in the absence of FUS, gene expression of type I interferons and proinflammatory cytokines elicited by viral or bacterial infection is significantly impaired. Emerging evidence suggests a role for stress granules (SGs) in antiviral innate immunity. We further reveal that knockout of FUS abolishes the ability to form SGs upon CVB3 infection or poly(I·C) treatment. Finally, we show that, to avoid FUS-mediated antiviral response and innate immunity, CVB3 infection results in cytoplasmic mislocalization and cleavage of FUS through the enzymatic activity of viral proteases. Together, our findings in this study identify FUS as a novel host antiviral factor which restricts CVB3 replication through direct inhibition of viral RNA transcription and protein translation and through regulation of host antiviral innate immunity. Enteroviruses are common human pathogens, including those that cause myocarditis (coxsackievirus B3 [CVB3]), poliomyelitis (poliovirus), and hand, foot, and mouth disease (enterovirus 71). Understanding the virus-host interaction is crucial for developing means of treating and preventing diseases caused by these pathogens. In this study, we explored the interplay between the host RNA-binding protein FUS/TLS and CVB3 and found that FUS/TLS restricts CVB3 replication through direct inhibition of viral RNA transcription/translation and through regulation of cellular antiviral innate immunity. To impede the antiviral role of FUS, CVB3 targets FUS for mislocalization and cleavage. Findings from this study provide novel insights into interactions between CVB3 and FUS, which may lead to novel therapeutic interventions against enterovirus-induced diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8316056 | PMC |
http://dx.doi.org/10.1128/JVI.00304-21 | DOI Listing |
PLoS One
January 2025
PHIM, Plant Health Institute of Montpellier, Univ. Montpellier, IRD, CIRAD, INRAE, Institute Agro, Montpellier, France.
Local co-circulation of multiple phylogenetic lineages is particularly likely for rapidly evolving pathogens in the current context of globalisation. When different phylogenetic lineages co-occur in the same fields, they may be simultaneously present in the same host plant (i.e.
View Article and Find Full Text PDFPhysiol Res
December 2024
Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been associated with significant cardiovascular complications, including myocardial infection and pulmonary embolism. This study aims to elucidate the relationship between the presence of SARS-CoV-2 RNA in the myocardium of the left ventricle and the levels of IgG and IgM antibodies against the SARS-CoV-2 virus in deceased COVID-19 patients. We conducted a post-mortem examination on 91 individuals who succumbed to COVID-19-related complications.
View Article and Find Full Text PDFAIDS Res Hum Retroviruses
January 2025
Department of Infectious Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
In 2023, we published a case study involving a 10-year-old HIV-1-infected child with low-level viremia (LLV). We showed that this child patient achieved successful viral suppression by modifying the antiretroviral therapy (ART) regimen according to the HIV-1 DNA genotypic drug resistance testing. In this study, we aimed to address whether HIV-1 DNA genotypic drug resistance testing could direct successfully virological suppression in HIV-1-infected patients experiencing persistent LLV based on evidence from a cohort study.
View Article and Find Full Text PDFCurr Pharm Biotechnol
January 2025
Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, AT & Po Piparia, Waghodia, Vadodara, Gujarat, India.
Alzheimer's disease (AD) remains a major challenge in developing effective treatments due to its complex pathophysiology, including the accumulation of amyloid-beta plaques and tau tangles. Small interfering RNA (siRNA) technology offers promise for targeted gene silencing, but effective delivery to the central nervous system remains a significant obstacle. Viral vectors have emerged as potent delivery vehicles for transporting siRNA to neural tissues.
View Article and Find Full Text PDFVirol J
January 2025
Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for in the Eastern Mediterranean Region, Institut Pasteur de Tunis, University of Tunis El Manar, 13 place Pasteur, BP74 1002 le Belvédère, Tunis, Tunisia.
Background: Primary Immunodeficiency disorders (PID) can increase the risk of severe COVID-19 and prolonged infection. This study investigates the duration of SARS-CoV-2 excretion and the genetic evolution of the virus in pediatric PID patients as compared to immunocompetent (IC) patients.
Materials And Methods: A total of 40 nasopharyngeal and 24 stool samples were obtained from five PID and ten IC children.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!