Graphene is conceivably the most nonlinear optoelectronic material we know. Its nonlinear optical coefficients in the terahertz frequency range surpass those of other materials by many orders of magnitude. Here, we show that the terahertz nonlinearity of graphene, both for ultrashort single-cycle and quasi-monochromatic multicycle input terahertz signals, can be efficiently controlled using electrical gating, with gating voltages as low as a few volts. For example, optimal electrical gating enhances the power conversion efficiency in terahertz third-harmonic generation in graphene by about two orders of magnitude. Our experimental results are in quantitative agreement with a physical model of the graphene nonlinearity, describing the time-dependent thermodynamic balance maintained within the electronic population of graphene during interaction with ultrafast electric fields. Our results can serve as a basis for straightforward and accurate design of devices and applications for efficient electronic signal processing in graphene at ultrahigh frequencies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8026126PMC
http://dx.doi.org/10.1126/sciadv.abf9809DOI Listing

Publication Analysis

Top Keywords

terahertz nonlinearity
8
nonlinearity graphene
8
orders magnitude
8
electrical gating
8
graphene
7
terahertz
5
electrical tunability
4
tunability terahertz
4
graphene graphene
4
graphene conceivably
4

Similar Publications

Graphene has unique properties paving the way for groundbreaking future applications. Its large optical nonlinearity and ease of integration in devices notably makes it an ideal candidate to become a key component for all-optical switching and frequency conversion applications. In the terahertz (THz) region, various approaches have been independently demonstrated to optimize the nonlinear effects in graphene, addressing a critical limitation arising from the atomically thin interaction length.

View Article and Find Full Text PDF

Terahertz Saturable Absorption across Charge Separation in Photoexcited Monolayer Graphene/MoS Heterostructure.

J Phys Chem Lett

January 2025

Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.

Unveiling the nonlinear interactions between terahertz (THz) electromagnetic waves and free carriers in two-dimensional materials is crucial for the development of high-field and high-frequency electronic devices. Herein, we investigate THz nonlinear transport dynamics in a monolayer graphene/MoS heterostructure using time-resolved THz spectroscopy with intense THz pulses as the probe. Following ultrafast photoexcitation, the interfacial charge transfer establishes a nonequilibrium carrier redistribution, leaving free holes in the graphene and trapping electrons in the MoS.

View Article and Find Full Text PDF

Collective modes in terahertz field response of disordered superconductors.

J Phys Condens Matter

January 2025

Department of Physics, Kent State University, 008 Smith Hall, Kent, Ohio, 44240, UNITED STATES.

We consider a problem of nonlinear response to an external electromagnetic radiation in conventional disordered superconductors which contain a small amount of weak magnetic impurities. We focus on the diffusive limit and use Usadel equation to analyze the excitation energy and dispersion relation of the collective modes. We determine the resonant frequency and dispersion of both amplitude (Schmidt-Higgs) and phase (Carlson-Goldman) modes for moderate strength of magnetic scattering.

View Article and Find Full Text PDF

We report a nonlinear terahertz (THz) detection device based on a metallic bull's-eye plasmonic antenna. The antenna, fabricated with femtosecond laser direct writing and deposited on a nonlinear gallium phosphide (GaP) crystal, focuses incoming THz waveforms within the sub-wavelength bull's eye region to locally enhance the THz field. Additionally, the plasmonic structure minimizes diffraction effects allowing a relatively long interaction length between the transmitted THz field and the co-propagating near-infrared gating pulse used in an electro-optic sampling configuration.

View Article and Find Full Text PDF

Antiferromagnetic semimetal terahertz photodetectors enhanced through weak localization.

Nat Commun

January 2025

State Key Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Yutian Road 500, Shanghai, 200083, China.

Article Synopsis
  • The study explores the terahertz detection capabilities of the two-dimensional antiferromagnetic semimetal NbFeTe, highlighting its unique properties.
  • The interaction of antiferromagnetic moments and electron spins leads to a nonlinear increase in the material's responsivity as temperatures drop, facilitated by the use of asymmetric electrodes.
  • The NbFeTe₂/graphene heterojunction achieves impressive performance metrics, indicating its potential for high-speed imaging in terahertz applications.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!