Electron microscopic studies of the intracellular polymerization of sickle hemoglobin.

Blood Cells

Laboratory of Chemical Biology, National Institute of Diabetes, and Digestive and Kidney Diseases, Bethesda, Maryland 20892.

Published: August 1988

Transmission electron microscopy has been used to study intracellular sickle hemoglobin polymer in unfractionated cells from the arterial and venous blood of patients and after external deoxygenation. We detect polymerized hemoglobin in up to 10% of the cells in the venous circulation, especially in cells that are "cigar-shaped" and appear to be irreversibly sickled. We could not see well-defined polymer in mixed arterial samples; nevertheless, we found electron opaque spots, which could be ferritin granules, hemosiderin, or small aggregates of hemoglobin S. However, upon sequential chemical deoxygenation using 1.0% sodium metabisulphite, polymer formation was seen at oxygen saturation values of 75%-85%. Cells that were physically deoxygenated using gas mixtures containing nitrogen-carbon dioxide-oxygen mixtures were found to contain distinct polymers of deoxyhemoglobin S at oxyhemoglobin saturation values of 50%-75%. As deoxygenation increases, we detect short, randomly arranged polymer in a loose network, with occasional long polymers. Upon further deoxygenation, the length and number of polymer forms increased. Between 0% and 50% saturation, most erythrocytes were full of long, parallel, closely packed polymers that tend to align and run parallel to the cell membrane. In both chemical and physically deoxygenated blood samples, cells were seen at 50%-75% oxyhemoglobin saturation that retained their normal biconcave disc shape, although they contained significant amounts of polymer. The structural changes in sickle erythrocytes seen in vitro due to physical or chemical deoxygenation of cells, may reflect in vivo intracellular changes in the sickle cell patient.

Download full-text PDF

Source

Publication Analysis

Top Keywords

sickle hemoglobin
8
chemical deoxygenation
8
saturation values
8
physically deoxygenated
8
oxyhemoglobin saturation
8
changes sickle
8
polymer
6
cells
6
deoxygenation
5
electron microscopic
4

Similar Publications

Sickle cell disease (SCD) and thalassemia are the most common hereditary disorders encountered in Central India. Timely identification of these disorders is critical to reduction in severe clinical manifestations and for identifying disease burden. Present study reports spectrum of hemoglobinopathies among the referred anemia patients to single centre in central India.

View Article and Find Full Text PDF

Background: Red Blood Cell Exchange (RBCX) is a common treatment for pediatric sickle cell disease (SCD). Since inflammation with elevated proinflammatory cytokines plays a crucial role in SCD, this study hypothesized that RBCX might lower these cytokines and aimed to assess the impact of this technique on these markers.

Methods: Prospective and observational study of pediatric SCD patients (HbSS genotype) enrolled in a chronic RBCX program at a Portuguese Hospital from October 2022 to August 2024.

View Article and Find Full Text PDF

A review on disease modifying pharmacologic therapies for sickle cell disease.

Ann Hematol

January 2025

Department of Internal Medicine, Section of Hematology/Oncology, University of Missouri-Kansas City, Kansas City, MO, 64108, USA.

Sickle cell disease (SCD) is an inherited hematologic disease caused by sickle hemoglobin as the predominant RBC hemoglobin or by sickle hemoglobin in combination with other abnormal β-hemoglobin variants like HbC, HbD and others. Sickling of erythrocytes under deoxygenated conditions is the basis of inflammatory and thrombotic cascades which result in multiple serious complications, leading to early morbidity and mortality. While HLA-matched allogeneic bone marrow transplantation is potentially curative, it has considerable limitations due to potential severe toxicities.

View Article and Find Full Text PDF

Artificial oxygen carriers have emerged as potential substitutes for red blood cells in situations of major blood loss, including accidents, surgical procedures, trauma, childbirth, stomach ulcers, hemorrhagic shock, and blood vessel ruptures which can lead to sudden reduction in blood volume. The therapeutic delivery of oxygen utilizing artificial oxygen carriers as red blood cell substitutes presents a promising avenue for treating a spectrum of disease models. Apart from that, the recent advancement of artificial oxygen carriers intended to supplant conventional blood transfusions draws significant attention due to the exigencies of warfare and the ongoing challenges posed by the COVID-19 pandemic.

View Article and Find Full Text PDF

Musculoskeletal complications in sickle cell disease: Pathophysiology, diagnosis and management.

Best Pract Res Clin Rheumatol

January 2025

ICMR-National Institute of Research in Tribal Health, Jabalpur, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India; Model Rural Health Research Unit, Jheet, Durg, India. Electronic address:

Sickle cell disease (SCD) is a mono-genic disorder causing chronic hemolysis, anemia, and vaso-occlusion, leading to musculoskeletal complications such as osteonecrosis, osteoporosis, and bone fractures affecting 50-70% SCD patients. These complications result from a complex interplay of genetic and physiological factors, including abnormal hemoglobin production, chronic inflammation, and oxidative stress. This review discusses the pathophysiology, pre-clinical symptoms, and clinical manifestations of musculoskeletal complications in SCD, as well as current treatment options, including pharmacological interventions, surgical procedures, and bone marrow transplantation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!