Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The spirochete bacterium serovar Pomona is enzootic to California sea lions (CSL; ) and causes periodic epizootics. Leptospirosis in CSL is associated with a high fatality rate in rehabilitation. Evidence-based tools for estimating prognosis and guiding early euthanasia of animals with a low probability of survival are critical to reducing the severity and duration of animal suffering. Classification and regression tree (CART) analysis of clinical data was used to predict survival outcomes of CSL with leptospirosis in rehabilitation. Classification tree outputs are binary decision trees that can be readily interpreted and applied by a clinician. Models were trained using data from cases treated from 2017 to 2018 at The Marine Mammal Center in Sausalito, CA, and tested against data from cases treated from 2010 to 2012. Two separate classification tree analyses were performed, one including and one excluding data from euthanized animals. When data from natural deaths and euthanasias were included in model-building, the best classification tree predicted outcomes correctly for 84.7% of cases based on four variables: appetite over the first 3 days in care, and blood urea nitrogen (BUN), creatinine, and sodium at admission. When only natural deaths were included, the best model predicted outcomes correctly for 87.6% of cases based on BUN and creatinine at admission. This study illustrates that CART analysis can be successfully applied to wildlife in rehabilitation to establish evidence-based euthanasia criteria with the goal of minimizing animal suffering. In the context of a large epizootic that challenges the limits of a facility's capacity for care, the models can assist in maximizing allocation of resources to those animals with the highest predicted probability of survival. This technique may be a useful tool for other diseases seen in wildlife rehabilitation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1638/2020-0111 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!