Quantitative monitoring of galactolipid hydrolysis by pancreatic lipase-related protein 2 using thin layer chromatography and thymol-sulfuric acid derivatization.

J Chromatogr B Analyt Technol Biomed Life Sci

Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13009 Marseille, France. Electronic address:

Published: March 2021

Galactolipids are the most abundant lipids on earth where they are mainly found in photosynthetic membranes of plant, algae, and cyanobacteria. Pancreatic lipase-related protein 2 (PLRP2) is an enzyme with galactolipase activity allowing mammals, especially herbivores, to digest this important source of fatty acids. We present a method for the quantitative analysis of galactolipids and galactosylated products resulting from their digestion by guinea pig PLRP2 (GPLRP2), using thin-layer-chromatography (TLC), thymol-sulfuric acid as derivatization reagent and scanning densitometry for detection. Thymol-sulfuric acid reagent has been used for the colorimetric detection of carbohydrates. It is shown here that the derivatization of galactosyl group from galactolipids by this reagent is not affected by the bound acyl glycerol, acyl chains length and number of galactose residues in the polar head. This allowed quantifying simultaneously the initial substrate and all galactosylated products generated upon the hydrolysis of monogalactosyl di-octanoylglycerol (C8-MGDG) by GPLRP2 using a single calibration with C8-MGDG as reference standard. The reaction products, monogalactosyl monooctanoyl glycerol (C8-MGMG) and monogalactosyl glycerol (MGG), were identified and quantified, MGG being recovered from the aqueous phase and analyzed by a separate TLC analysis. This method is therefore suitable to quantify the products resulting from the release of both fatty acids present in MGDG and thereby shows that PLRP2 can contribute to the complete digestion of galactolipids and further intestinal absorption of their fatty acids.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchromb.2021.122674DOI Listing

Publication Analysis

Top Keywords

thymol-sulfuric acid
12
fatty acids
12
pancreatic lipase-related
8
lipase-related protein
8
acid derivatization
8
galactosylated products
8
quantitative monitoring
4
monitoring galactolipid
4
galactolipid hydrolysis
4
hydrolysis pancreatic
4

Similar Publications

During heat sterilization of glucose solutions, a variety of glucose degradation products (GDPs) may be formed. GDPs can cause cytotoxic effects after parenteral administration of these solutions. The aim of the current study therefore was to develop a simple and quick high-performance thin-layer chromatography (HPTLC) method by which the major GDPs can be identified and (summarily) quantified in glucose solutions for parenteral administration.

View Article and Find Full Text PDF

Characterisation of α-amylase inhibitors in marigold plants via bioassay-guided high-performance thin-layer chromatography and attenuated total reflectance-Fourier transform infrared spectroscopy.

J Chromatogr B Analyt Technol Biomed Life Sci

March 2021

A.P. Arzamastsev Department of Pharmaceutical and Toxicological Chemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russian Federation; School of Pharmacy and Biomedical Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia.

A high-performance thin-layer chromatography with microchemical derivatization and bioassay guided detection was used for bioanalytical profiling of selected marigold plant extracts. Anisaldehyde/sulfuric acid reagent and thymol/sulfuric acid reagent were used to visualize separated components on the chromatograms. Antioxidant activity and α-amylase inhibition were assessed with 2 bioassays, DPPH assay to detect free radical scavengers and starch-iodineassay method to detect compounds that inhibit α-amylase.

View Article and Find Full Text PDF

Quantitative monitoring of galactolipid hydrolysis by pancreatic lipase-related protein 2 using thin layer chromatography and thymol-sulfuric acid derivatization.

J Chromatogr B Analyt Technol Biomed Life Sci

March 2021

Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13009 Marseille, France. Electronic address:

Galactolipids are the most abundant lipids on earth where they are mainly found in photosynthetic membranes of plant, algae, and cyanobacteria. Pancreatic lipase-related protein 2 (PLRP2) is an enzyme with galactolipase activity allowing mammals, especially herbivores, to digest this important source of fatty acids. We present a method for the quantitative analysis of galactolipids and galactosylated products resulting from their digestion by guinea pig PLRP2 (GPLRP2), using thin-layer-chromatography (TLC), thymol-sulfuric acid as derivatization reagent and scanning densitometry for detection.

View Article and Find Full Text PDF

We report on the isolation and purification of structurally intact eyespot apparatuses from the naked, biflagellate green alga Spermatozopsis similis. Two eyespot-enriched fractions, separated by sucrose gradient centrifugation, retained the typical reflective properties of eyespots in situ as demonstrated by reflection confocal laser scanning microscopy. Ultrastructurally, both fractions contained eyespot plates consisting of a single layer of lipid globules.

View Article and Find Full Text PDF

In high (45 mM)-phosphate medium, Methanospirillum hungatei strains GP1 and JF1 grew as very long, nonmotile chains of cells that did not possess flagella. However, growth in lower (3 or 30 mM)-phosphate medium resulted in the production of mostly single cells and short chains that were motile by means of two polar tufts of flagella, which transected the multilayered terminal plug of the cell. Electron microscopy of negatively stained whole mounts revealed a flagellar filament diameter of approximately 10 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!