Early seedling development is one of the most crucial period of the plant's life cycle, which is highly susceptible to adverse environmental conditions, especially those impose by salt stress. Castor plant (Ricinus communis) is a famous non-edible oilseed and salt-resistant crop worldwide. However, the specific metabolic responses in the cotyledons and roots of this species during seedling establishment under salt stress are still not clearly understood. In the present study, 16 d castor seedlings were treated with 150 mM NaCl for 6 d, and the metabolite profiling of cotyledons and roots was conducted using liquid chromatography (LC) combined with electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS). The Principal Component Analysis (PCA) results showed that the metabolites were great differed in cotyledons and roots under salt stress. There were 38 differential metabolites, mainly including fatty acid, nucleic acid and organic acids in the cotyledons, but only 19 differential metabolites, mainly including fatty acid and organic acids in the roots under such condition. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that flavone and flavonol biosynthesis, pantothenate and CoA biosynthesis, citrate cycle and carotenoid biosynthesis were the common metabolic pathways in response to salt stress in the two organs. Salt stress caused metabolite process alteration mainly on carbon and nitrogen metabolisms, and the carbon allocation from root to cotyledon was increased. Additionally, changes of amino acids and nucleic acids profiles were only found in the cotyledons, and the roots could enhance the activity of antioxidant enzyme systems to scavenge ROS under salinity. In conclusion, the present research provides an improved understanding on specific physiological changes in the cotyledons in castor early seedlings, and explores their interaction under salt stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2021.03.019 | DOI Listing |
Clin Kidney J
January 2025
Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
The mineralocorticoid receptor (MR) is a nuclear transcription factor that plays a critical role in regulating fluid, electrolytes, blood pressure, and hemodynamic stability. In conditions such as chronic kidney disease (CKD) and heart failure (HF), MR overactivation leads to increased salt and water retention, inflammatory and fibrotic gene expression, and organ injury. The MR is essential for transcriptional regulation and is implicated in metabolic, proinflammatory, and pro-fibrotic pathways.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, China.
The Jacalin-related lectins () gene family play a crucial role in regulating plant development and responding to environmental stress. However, a systematic bioinformatics analysis of the gene family in Gramineae plants has been lacking. In this study, we identified 101 JRL proteins from five Gramineae species and classified them into eight distinct clades.
View Article and Find Full Text PDFPhysiol Plant
January 2025
College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
Salt is a major abiotic factor significantly affecting plant growth and development. Alfalfa (Medicago sativa L.), a crucial perennial crop for livestock feed, shows significant differences in salt tolerance among different varieties.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
Collage of Arts and Sciences, Qatar University, Doha, Qatar.
Enhancing salt tolerance genetically through defining the genetic and physiological mechanisms intergenerational and transgenerational stress memory that contributes to sustainable agriculture by reducing the reliance on external inputs such as irrigation and improving the adaptability of barley to changing climate conditions. Salinity stress poses a substantial challenge to barley production worldwide, adversely affecting crop yield, quality, and agricultural sustainability. To address this, the present study utilized a genome-wide association san (GWAS) to identify genetic associations underlying intergenerational and transgenerational stress memory in response to salinity in a diverse panel of 138 barley accessions.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China. Electronic address:
Soil salinization is one of the main problems leading to a reduction in arable land area. In the present study, strongly salt-tolerant lines were screened for germination rates and physiological indices. The mechanism of saline-alkali stress tolerance in winter rapeseed was examined using transcriptome and metabolome analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!