Variable contributions of seafloor communities to ecosystem metabolism across a gradient of habitat-forming species.

Mar Environ Res

Tvärminne Zoological Station, University of Helsinki, Hanko, Finland; Baltic Sea Centre, Stockholm University, Stockholm, Sweden.

Published: May 2021

The contributions of habitat-forming species to the biodiversity and ecosystem processes of marine and terrestrial ecosystems are widely recognized. Aquatic plants are considered foundation species in shallow ecosystems, as they maintain biodiversity and sustain many ecosystem functions such as primary production and respiration. Despite the increasing amount of biodiversity-ecosystem functioning experiments in seagrass habitats, the effects of benthic variability on ecosystem functioning are rarely investigated across spatially variable aquatic plant habitats. Here, we quantitatively link seasonal variability in seafloor metabolism (i.e. gross primary production and community respiration) with major benthic community components (i.e. microphytobenthos, aquatic plants and macrofauna) across a structural complexity gradient of habitat-forming species (in terms of shoot density and biomass), ranging from bare sand, to a sparse mixture of plants to a dense monospecific seagrass meadow. The increasing complexity gradient enhanced the magnitude of the relationships between benthic community and seafloor metabolism. The daily average seafloor metabolism per season at the bare site was similar to the sparse site, highlighting the role of microphytobenthos for seafloor metabolism in shallow unvegetated sediments. The contribution of the associated macrofauna to the seafloor respiration was similar to the aquatic plant community contribution. Infauna was the main macrofaunal component significantly explaining the seasonal variability of seafloor respiration. However, benthic community-metabolism relationships were stronger within the plant community than within the macrofauna community (i.e. steepest slopes and lowest p-values). Understanding these relationships are a priority since climate change and biodiversity loss are reducing habitat complexity around the world, jeopardizing valuable ecosystem functions and services.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marenvres.2021.105321DOI Listing

Publication Analysis

Top Keywords

seafloor metabolism
16
habitat-forming species
12
gradient habitat-forming
8
aquatic plants
8
ecosystem functions
8
primary production
8
aquatic plant
8
seasonal variability
8
variability seafloor
8
benthic community
8

Similar Publications

Aqueous-soluble hydrocarbons dissolve into the ocean's interior and structure deep-sea microbial populations influenced by natural oil seeps and spills. n-Pentane is a seawater-soluble, volatile compound abundant in petroleum products and reservoirs and will partially partition to the deep-water column following release from the seafloor. In this study, we explore the ecology and niche partitioning of two free-living Cycloclasticus strains recovered from seawater incubations with n-pentane and distinguish them as an open ocean variant and a seep-proximal variant, each with distinct capabilities for hydrocarbon catabolism.

View Article and Find Full Text PDF

Array of metabolic pathways in a kleptoplastidic foraminiferan protist supports chemoautotrophy in dark, euxinic seafloor sediments.

ISME J

January 2025

Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States.

Investigations of the metabolic capabilities of anaerobic protists advances our understanding of the evolution of eukaryotic life on Earth and for uncovering analogous extraterrestrial complex microbial life. Certain species of foraminiferan protists live in environments analogous to early Earth conditions when eukaryotes evolved, including sulfidic, anoxic and hypoxic sediment porewaters. Foraminifera are known to form symbioses as well as to harbor organelles from other eukaryotes (chloroplasts), possibly bolstering the host's independence from oxygen.

View Article and Find Full Text PDF

Sediment plays a pivotal role in deep-sea ecosystems by providing habitats for a diverse range of microorganisms and facilitates the cycling processes of carbon, sulfur and nitrogen. Beyond the normal seafloor (NS), distinctive geographical features such as cold seeps (CS) and hydrothermal vent (HV) are recognized as life oases harboring highly diverse microbial communities. A global atlas of microorganisms can reveal the notable association between geological processes and microbial colonization.

View Article and Find Full Text PDF

Fungal Methane Production Under High Hydrostatic Pressure in Deep Subseafloor Sediments.

Microorganisms

October 2024

State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.

Fungi inhabiting deep subseafloor sediments have been shown to possess anaerobic methane (CH) production capabilities under atmospheric conditions. However, their ability to produce CH under in situ conditions with high hydrostatic pressure (HHP) remains unclear. Here, 20R-7-F01, isolated from ~2 km below the seafloor, was cultured in Seawater Medium (SM) in culture bottles fitted with sterile syringes for pressure equilibration.

View Article and Find Full Text PDF

Response to the CO concentrating mechanisms and transcriptional time series analysis of Ulva prolifera under inorganic carbon limitation.

Harmful Algae

November 2024

College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China. Electronic address:

Ulva prolifera is a dominant species in green tides and has been affecting marine ecosystem for many years. Due to the low availability of CO in the environment, U. prolifera utilizes the CO concentrating mechanisms (CCMs) to increase intracellular inorganic carbon concentration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!