Skin fibroblasts, derived from normal individuals or patients with Wolman's disease (an autosomal recessive disorder due to acid lysosomal lipase deficiency) were incubated with the fluorescent fatty acid, pyrene-decanoic acid (P10). Measurements of the fluorescence intensities of the total lipid extracts indicated that equal quantities of P10 were incorporated into both cell types. The fluorescence emitted by the intact cells was subsequently recorded in a fluorescence microscope equipped with a microdetector unit, which permitted determination of the fluorescence emitted by the intact cell or by specific regions thereof. The fluorescence intensities emitted by the lipidotic cells exceeded those of their normal counterparts 2- and 5-fold when comparing the entire cells or the perinuclear region, respectively. The cells were then subjected to subcellular fractionation and an analysis of the fractions revealed that up to 85-90% of the fluorescence of the lysosome-mitochondrial pellet was derived from free pyrenedecanoic acid; the latter contributed only 15-18% to the fluorescence of the homogenate or the cytosol. There was no difference in the fluorescence of the lipid extracts from the respective fractions of the lipidotic or normal cells. However, the fluorescence emitted by the intact lysosome-mitochondrial fraction of the lipidotic cells exceeded that of its normal counterpart 2.5-fold. These data suggest that the increased fluorescence intensity of the intact lipidotic cells resulted from a higher quantum yield of free P10 molecules solubilized in the hydrophobic environment of their neutral lipid-containing storage granules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0005-2760(88)90048-3 | DOI Listing |
J Fluoresc
January 2025
Infectious Disease Department, Hangzhou First People's Hospital Tonglu Hospital, Hangzhou, Zhejiang, China.
This study synthesizes a novel three-dimensional (3D) porous coordination polymer (CP), {[Co(L)₀.₅(H₂O)]·NMP·H₂O} (1), via a solvothermal method in a mixed solvent of water and NMP (1-methyl-2-pyrrolidinone), reacting Co(II) ions with H₄L (1,4-bis(5,6-carboxybenzimidazolylmethyl)benzene). The CP exhibits unique fluorescence properties, emitting at 420 nm under UV light excitation at 350 nm, and serves as a carrier for Mesalazine (MSZ) in therapeutic applications.
View Article and Find Full Text PDFAdv Mater
January 2025
Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
Herein, a parallel "bifunctional group" modulation method is proposed to achieve controlled modulation of the emission wavelength and full-width at half-maximum (FWHM) values. As a result, three proof-of-concept emitters, namely DBNDS-TPh, DBNDS-DFPh, and DBNDS-CNPh, are designed and synthesized, with the first functional dibenzo[b,d]thiophene unit concurrently reducing the bandgap and elevate their triplet state energy. A second functional group 1,1':3',1″-triphenyl, and electron acceptors 1,3-difluorobenzene and benzonitrile, respectively, to deepen the HOMO and LUMO levels.
View Article and Find Full Text PDFSci Adv
January 2025
Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan.
The pursuit of boron-based organic compounds with multiresonance (MR)-induced thermally activated delayed fluorescence (TADF) is propelled by their potential as narrowband blue emitters for wide-gamut displays. Although boron-doped polycyclic aromatic hydrocarbons in MR compounds share common structural features, their molecular design traditionally involves iterative approaches with repeated attempts until success. To address this, we implemented machine learning algorithms to establish quantitative structure-property relationship models, predicting key optoelectronic characteristics, such as full width at half maximum (FWHM) and main peak wavelength, for deep-blue MR candidates.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China.
Chromophores incorporated into rigid polymer matrices may exhibit novel photophysical properties distinct from those in liquid solutions. In this work, we explored the decay path of the second ππ* state (2ππ*) of riboflavin in poly(vinyl alcohol) (PVA) solutions and films with various acidities. Highly efficient internal conversion from 2ππ* to the lowest ππ* state (1ππ*) induced by slight in-plane motion is demonstrated in all PVA solutions and films, irrespective of environmental acidity and rigidification.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.
Controlling intermolecular interactions, such as triplet-triplet annihilation (TTA) and triplet-polaron annihilation (TPA), is crucial for achieving high quantum efficiency in organic light-emitting diodes (OLEDs) by suppressing exciton loss. This study investigates the molecular design of tetradentate Pt(II) complexes used for singlet exciton harvesting in fluorescent OLEDs to elucidate the relationship between the chemical structure of the ligands and exciton quenching mechanisms. It was discovered that the bulkiness of substituents is pivotal for maximizing quantum efficiency in these devices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!