Hydrogen, produced by water splitting, has been proposed as one of the main green energy vectors of the future if produced from renewable energy sources. However, to substitute fossil fuels, large amounts of pure water are necessary, scarce in many world regions. In this work, we fabricate efficient and earth-abundant electrodes, study the challenges of using real seawater, and propose an electrode regeneration method to face undesired salt deposition. Ni-Mo-Fe trimetallic electrocatalyst is deposited on non-expensive graphitic carbon felts both for hydrogen (HER) and oxygen evolution reactions (OER) in seawater and alkaline seawater. Cl pitting and the chlorine oxidation reaction are suppressed on these substrates and alkalinized electrolyte. Precipitations on the electrodes, mainly CaCO , originating from seawater-dissolved components have been studied, and a simple regeneration technique is proposed to rapidly dissolve undesired deposited CaCO in acidified seawater. Under alkaline conditions, Ni-Mo-Fe-based catalyst is found to reconfigure, under cathodic bias, into Ni-Mo-Fe alloy with a cubic crystalline structure and Ni : Fe(OH) redeposits whereas, under anodic bias, it is transformed into a follicular Ni:FeOOH structure. High productivities over 300 mA cm and voltages down to 1.59 V@10 mA cm for the overall water splitting reaction have been shown, and electrodes are found stable for over 24 h without decay in alkaline seawater conditions and with energy efficiency higher than 61.5 % which makes seawater splitting promising and economically feasible.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202100194DOI Listing

Publication Analysis

Top Keywords

seawater splitting
8
hydrogen oxygen
8
oxygen evolution
8
water splitting
8
seawater alkaline
8
alkaline seawater
8
seawater
6
facing seawater
4
splitting
4
splitting challenges
4

Similar Publications

Deep water vetulicolians from the lower Cambrian of China.

PeerJ

January 2025

Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, China.

Vetulicolians are an enigmatic phylum of extinct Cambrian marine invertebrates. They are particularly diverse in the Chengjiang Biota of China, but representatives have been recovered from other Fossil-Lagerstätten (Cambrian Stage 3-Drumian). These organisms are characterized by a bipartite body, which is split into an anterior section and a posterior segmented section connected by a narrow constriction.

View Article and Find Full Text PDF

Ru@MnO core@shell nanowires as a bifunctional electrocatalyst for efficient solar-driven seawater splitting.

Chem Commun (Camb)

January 2025

Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.

Seawater electrolysis technology for hydrogen production has attracted worldwide attention due to the abundant seawater resources. Herein, we proposed core-shell Ru@MnO nanowires (NWs) with α/β-MnO NWs as the core and amorphous Ru as the shell, in which the Ru@α-MnO NWs exhibited lower overpotential and better stability. More importantly, they can operate stably as a bifunctional catalyst for more than 250 h and maintain excellent catalytic performance when driven by solar energy.

View Article and Find Full Text PDF

NiFe-based arrays with manganese dioxide enhance chloride blocking for durable alkaline seawater oxidation.

J Colloid Interface Sci

April 2025

College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014 Shandong, China; Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China. Electronic address:

Seawater splitting is increasingly recognized as a promising technique for hydrogen production, while the lack of good electrocatalysts and detrimental chlorine chemistry may hinder further development of this technology. Here, the interfacial engineering of manganese dioxide nanoparticles decorated on NiFe layered double hydroxide supported on nickel foam (MnO@NiFe LDH/NF) is reported, which works as a robust catalyst for alkaline seawater oxidation. Density functional theory calculations and experiment findings reveal that MnO@NiFe LDH/NF can selectively enrich OH and repel Cl in oxygen evolution reaction (OER).

View Article and Find Full Text PDF

Rapid Synthesis of Carbon-Supported Ru-RuO₂ Heterostructures for Efficient Electrochemical Water Splitting.

Adv Sci (Weinh)

January 2025

Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California, 95064, USA.

Development of high-performance electrocatalysts for water splitting is crucial for a sustainable hydrogen economy. In this study, rapid heating of ruthenium(III) acetylacetonate by magnetic induction heating (MIH) leads to the one-step production of Ru-RuO₂/C nanocomposites composed of closely integrated Ru and RuO₂ nanoparticles. The formation of Mott-Schottky heterojunctions significantly enhances charge transfer across the Ru-RuO interface leading to remarkable electrocatalytic activities toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1 m KOH.

View Article and Find Full Text PDF

Constructing bifunctional electrocatalysts through the synergistic effect of diverse metal sites is crucial for achieving high-efficiency and steady overall water splitting. Herein, a "dual-HER/OER-sites-in-one" strategy is proposed to regulate dominant active sites, wherein Ni/Co(OH)-Ru heterogeneous catalysts formed on nickel foam (NF) demonstrate remarkable catalytic activity for oxygen evolution reaction (OER) as well as hydrogen evolution reaction (HER). Meanwhile, the potentials@10 mA cm of Ni/Co(OH)-Ru@NF for overall alkaline water and seawater splitting are only 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!