A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hand Pose Understanding With Large-Scale Photo-Realistic Rendering Dataset. | LitMetric

Hand pose understanding is essential to applications such as human computer interaction and augmented reality. Recently, deep learning based methods achieve great progress in this problem. However, the lack of high-quality and large-scale dataset prevents the further improvement of hand pose related tasks such as 2D/3D hand pose from color and depth from color. In this paper, we develop a large-scale and high-quality synthetic dataset, PBRHand. The dataset contains millions of photo-realistic rendered hand images and various ground truths including pose, semantic segmentation, and depth. Based on the dataset, we firstly investigate the effect of rendering methods and used databases on the performance of three hand pose related tasks: 2D/3D hand pose from color, depth from color and 3D hand pose from depth. This study provides insights that photo-realistic rendering dataset is worthy of synthesizing and shows that our new dataset can improve the performance of the state-of-the-art on these tasks. This synthetic data also enables us to explore multi-task learning, while it is expensive to have all the ground truth available on real data. Evaluations show that our approach can achieve state-of-the-art or competitive performance on several public datasets.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2021.3070439DOI Listing

Publication Analysis

Top Keywords

hand pose
28
hand
8
pose understanding
8
photo-realistic rendering
8
rendering dataset
8
pose tasks
8
tasks 2d/3d
8
2d/3d hand
8
pose color
8
color depth
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!