Background: Upregulation of human enhancer filamentation 1 (HEF1/NEDD9/Cas-L) and Polo-like kinase 1 (Plk1) is closely correlated with metastasis of human cancer. However, the mechanism by which the overexpression of HEF1 or Plk1 stimulates cancer metastasis and induces tumorigenesis remains enigmatic. In addition, the accumulation of HEF1 at the focal adhesion (FA) is known to be an essential event in cancer cell migration, but the mechanism of how HEF1 is targeted to the FA remains yet to be unveiled.
Objective: This study was performed to elucidate the FA docking mechanism of HEF1 and to determine its effect on tumorigenesis.
Methods: To confirm the effect of the kinase on HEF1 translocation, various expression-knockdown stable cell lines were generated using a lentivirus system, and the effect of the HEF1-Plk1 complex on tumorigenesis was confirmed using a xenograft mouse model.
Results: Here, we show that Wnt5a-dependent Plk1 binding to HEF1 is critically required for HEF1 translocation to the FA. We also confirmed that Plk1 and CK1δ activities essential for HEF1 translocation are induced by Wnt5a. Finally, we confirmed the induction of tumorigenesis by the HEF1-Plk1 complex in the xenograft mouse model.
Conclusion: Our data collectively unveil the Wnt5a-CK1δ-HEF1-Plk1-FA remodeling pathway that governs HEF1 transportation to the FA to induce cell migration and tumorigenesis. This study sheds light on a mechanism underlying tumorigenesis and provides new strategies for anticancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13258-021-01088-x | DOI Listing |
Genes Genomics
May 2021
Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk, 28116, South Korea.
Biochem Biophys Res Commun
January 2019
Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China. Electronic address:
The human enhancer of filamentation 1 (HEF1) is a multi-domain docking protein of the p130 Cas family. Research reports on the mechanism of HEF1 in gastric cancer (GC) differentiation are limited. In this study, we reveal that HEF1 plays an essential role in regulating of differentiation in human GC.
View Article and Find Full Text PDFJ Biol Chem
January 2018
From the World Class Institute, Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Korea,
Exp Cell Res
January 2015
Department of Surgery, Walter-Reed National Military Medical Center, Bethesda, MD 20814, USA.
There are lines of evidence demonstrating that NEDD9 (Cas-L, HEF-1) plays a key role in the development, progression, and metastasis of breast cancer cells. We previously reported that NEDD9 plays a critical role for promoting migration and growth of MDA-MB-231. In order to further characterize the mechanisms of NEDD9-mediated cancer migration and growth, stable cells overexpressing NEDD9 were generated using HCC38 as a parental cell line which expresses low level of endogenous NEDD9.
View Article and Find Full Text PDFPLoS One
November 2011
Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America.
The Cas scaffolding proteins (NEDD9/HEF1/CAS-L, BCAR1/p130Cas, EFSSIN, and HEPL/CASS4) regulate cell migration, division and survival, and are often deregulated in cancer. High BCAR1 expression is linked to poor prognosis in breast cancer patients, while upregulation of NEDD9 contributes to the metastatic behavior of melanoma and glioblastoma cells. Our recent work knocking out the single Drosophila Cas protein, Dcas, identified a genetic interaction with E-cadherin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!