Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In situ monitoring of gas phase composition reveals the link between the changing gas phase chemistry during atomic layer deposition (ALD) half-cycle reactions and the electronic conductivity of ALD-TiO thin films. Dimethylamine ((CH)NH, DMA) is probed as the main product of both the TDMAT and water vapor half-reactions during the TDMAT/HO ALD process. In-plane electronic transport characterization of the ALD grown films demonstrates that the presence of DMA, a reducing agent, in the ALD chamber throughout each half-cycle is correlated with both an increase in the films' electronic conductivity, and observation of titanium in the 3+ oxidation state by ex situ X-ray photoelectron spectroscopy analysis of the films. DMA annealing of as-grown TiO films in the ALD chamber produces a similar effect on their electronic characteristics, indicating the importance of DMA-induced oxygen deficiency of ALD-TiO in dictating the electronic conductivity of as-grown films.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.1c00115 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!