Threshold switching devices are fundamental active elements in more than Moore approaches, integrating the new generation of non-volatile memory devices. Here, the authors report an in-plane threshold resistive switching device with an on/off ratio above 10 , a low resistance state of 10 to 100 kΩ and a high resistance state of 10 to 100 GΩ. Our devices are based on nanocomposites of silver nanowire networks and titanium oxide, where volatile unipolar threshold switching takes place across the gap left by partially spheroidized nanowires. Device reversibility depends on the titanium oxide thickness, while nanowire network density determines the threshold voltage, which can reach as low as 0.16 V. The switching mechanism is explained through percolation between metal-semiconductor islands, in a combined tunneling conduction mechanism, followed by a Schottky emission generated via Joule heating. The devices are prepared by low-cost, atmospheric pressure, and scalable techniques, enabling their application in printable, flexible, and transparent electronics.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202007344DOI Listing

Publication Analysis

Top Keywords

titanium oxide
12
silver nanowire
8
nanowire networks
8
threshold switching
8
resistance state
8
state 100
8
switching
5
planar transparent
4
transparent memristive
4
devices
4

Similar Publications

TiO-sodium alginate core-shell nanosystem for higher antimicrobial wound healing application.

Int J Biol Macromol

January 2025

Department of Chemistry, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India; Functional Materials Laboratory, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India.

Wounds that are not properly managed can cause complications. Prompt and proper care is essential, to prevent microbial infection. Growing interest in metal oxide nanoparticles (NPs) for innovative wound treatments targeting healing and microbial infections.

View Article and Find Full Text PDF

Novel core-shell flower-like polyamine/C dual-functional magnetic titanium dioxide-based oligopolymer (FeO@fTiO-PAPMA/C) microspheres were synthesized and used as a magnetic solid-phase extraction (MSPE) adsorbent to purify 52 pesticides in bayberry samples. The FeO@fTiO-PAPMA/C microspheres were fully characterized and it can obviously improve the purification ability of 52 pesticides in bayberry samples. Coupled to LC-MS/MS, the developed method indicated low limits of detection (LODs) and limits of quantification (LOQs) of 0.

View Article and Find Full Text PDF

Using direct method to estimate calcium digestibility of barley and soybean meal in quail chicks.

Poult Sci

January 2025

Department of Animal Sciences, Faculty of Agriculture, University of Zabol, Sistan 98661-5538, Iran. Electronic address:

The availability of calcium (Ca) in poultry diets is influenced by various factors, such as the feed ingredients used. This study assessed the apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of Ca in barley and soybean meal (SBM) in young quail chicks using a direct method. Three diets were formulated, including a Ca-free basal diet to evaluate ileal endogenous calcium losses (IECaL), and two diets with barley or SBM as the sole Ca sources.

View Article and Find Full Text PDF

An emodin-mediated multifunctional nanoplatform with augmented sonodynamic and immunoregulation for osteomyelitis therapy.

J Colloid Interface Sci

January 2025

Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032 China; Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan 030006 China. Electronic address:

Emodin (ED), as a traditional Chinese medicine, possesses a variety of biological activities and is also one of natural sonosensitizer. Whether emodin could react with titanium dioxide to enhance the sonodynamic activity for safely treating osteomyelitis remains to be explored. Hence, an ED-conjugated Mn-doped titanium dioxide (TOM) nanorod array is designed and prepared on titanium to eliminate bacterial infections under ultrasound (US) treatment.

View Article and Find Full Text PDF

First-principles study of CO and HO adsorption on the anatase TiO(101) surface: effect of Au doping.

Phys Chem Chem Phys

January 2025

Shanxi Coal International Energy Group Co., Ltd., Taiyuan 030000, China.

Photocatalytic reduction of CO will play a major role in future energy and environmental crisis. To investigate the adsorption mechanisms of CO and HO molecules involved in the catalytic process on the surface of anatase titanium dioxide 101 (TiO(101)) and the influence of Au atom doping on their adsorption, first-principles density functional theory calculations were used. The results show that 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!