Hazardous oxygenated polycyclic aromatic hydrocarbons (OPAHs) originate from combustion (primary sources) or postemission conversion of polycyclic aromatic hydrocarbons (PAHs) (secondary sources). We evaluated the global distribution of up to 15 OPAHs in 195 mineral topsoils from 33 study sites (covering 52° N-47° S, 71° W-118 °E) to identify indications of primary or secondary sources of OPAHs. The sums of the (frequently measured 7 and 15) OPAH concentrations correlated with those of the Σ16EPA-PAHs. The relationship of the Σ16EPA-PAH concentrations with the Σ7OPAH/Σ16EPA-PAH concentration ratios (a measure of the variable OPAH sources) could be described by a power function with a negative exponent <1, leveling off at a Σ16EPA-PAH concentration of approximately 400 ng g . We suggest that below this value, secondary sources contributed more to the OPAH burden in soil than above this value, where primary sources dominated the OPAH mixture. This was supported by a negative correlation of the Σ16EPA-PAH concentrations with the contribution of the more readily biologically produced highly polar OPAHs (log octanol-water partition coefficient <3) to the Σ7OPAH concentrations. We identified mean annual precipitation (Spearman ρ = .33, p < .001, n = 143) and clay concentrations (ρ = .55, p < .001, n = 33) as important drivers of the Σ7OPAH/Σ16EPA-PAH concentration ratios. Our results indicate that at low PAH contamination levels, secondary sources contribute considerably and to a variable extent to total OPAH concentrations, whereas at Σ16EPA-PAH contamination levels >400 ng g , there was a nearly constant Σ7OPAH/Σ16EPA-PAH ratio (0.08 ± 0.005 [SE], n = 80) determined by their combustion sources.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jeq2.20224DOI Listing

Publication Analysis

Top Keywords

polycyclic aromatic
12
aromatic hydrocarbons
12
global distribution
8
oxygenated polycyclic
8
mineral topsoils
8
secondary sources
8
distribution oxygenated
4
hydrocarbons mineral
4
topsoils hazardous
4
hazardous oxygenated
4

Similar Publications

Draft genome sequence of sp. SA01 isolated from seedlings collected in Cape Cod (USA).

Microbiol Resour Announc

January 2025

The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA.

A draft genome was generated for a strain of closely related to sp. ENV421 isolated from plants of smooth cordgrass germinated from seeds collected in a salt marsh in Cape Cod (USA). Genomic DNA was sequenced using paired-end Illumina technologies.

View Article and Find Full Text PDF

This review explores biochar's potential as a sustainable and cost-effective solution for remediating organic pollutants, particularly polycyclic aromatic hydrocarbons (PAHs) and pesticides, in water. Biochar, a carbon-rich material produced from biomass pyrolysis, has demonstrated adsorption efficiencies exceeding 90% under optimal conditions, depending on the feedstock type, pyrolysis temperature, and functionalization. High surface area (up to 1500 m/g), porosity, and modifiable surface functional groups make biochar effective in adsorbing a wide range of contaminants, including toxic metals, organic pollutants, and nutrients.

View Article and Find Full Text PDF

Magnetic optimizing surface-enhanced Raman scattering (SERS) strategy of detection and in-situ monitoring of photodegradation of Benzo[a]pyrene in water.

Anal Chim Acta

January 2025

The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Frontiers Science Center of Biomimetic Catalysis and College of chemistry and materials science, School of Environmental and Geographical Sciences. Shanghai Normal University, Shanghai, 200234, People's Republic of China. Electronic address:

Background: Polycyclic aromatic hydrocarbons (PAHs) are one of the most dangerous persistent organic pollutants in the environment. Due to the discharge of chemical plants and domestic water, the existence of PAHs in sea water and lake water is harmful to human health. A method for rapid detection and removal of PAHs in water needs to be developed.

View Article and Find Full Text PDF

Wintering loons in South Korea face an ongoing threat from polycyclic aromatic hydrocarbons: Shifting sources and potential DNA damage.

Environ Pollut

January 2025

Department of Biological Sciences, College of Natural Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea. Electronic address:

Diving birds, particularly those sharing coastal habitats with fishing grounds, are at risk from oil pollution. Despite documented cases of bird mortality, the specific role of oil pollution in these death remains unclear. To address this knowledge gap, this study examined polycyclic aromatic hydrocarbon (PAH) contamination, its sources, and its impact on loon health.

View Article and Find Full Text PDF

Measurements of polycyclic aromatic hydrocarbons (PAHs) were simultaneously carried out at three different urban locations in Croatia (Zagreb, Slavonski Brod and Vinkovci) characterized as urban residential (UR), urban industrial (UI) and urban background (UB), respectively. This was done in order to determine seasonal and spatial variations, estimate dominant pollution sources for each area and estimate the lifetime carcinogenic health risks from atmospheric PAHs. Mass concentrations of PAHs showed seasonal variation with the highest values during the colder period and the lowest concentration during the warmer period of the year.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!