A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Keratinolytic protease from Pseudomonas aeruginosa for leather skin processing. | LitMetric

Keratinolytic protease from Pseudomonas aeruginosa for leather skin processing.

J Genet Eng Biotechnol

Department of Genetic Engineering & Biotechnology, Shahjalal University of Science & Technology, Sylhet, 3114, Bangladesh.

Published: April 2021

Background: The leather industry generates huge volume of waste each year. Keratin is the principal constituents of this waste that is resistant to degradation. Some bacteria have the ability to degrade keratin through synthesis of a protease called keratinase that can be used as sources of animal feed and industrial production of biodiesel, biofertilizer, and bioplastic. Majority of the studies focused on keratin degradation using gram-positive bacteria. Not much of studies are currently available on production of keratinase from gram-negative bacteria and selection of best parameters for the maximum production of enzyme. The aim of this study was to isolate and characterize both groups of bacteria from soil for keratinase and optimize the production parameters.

Results: A total of 50 isolates were used for initial screening of enzyme production in skim milk, casein, and feather meal agar. Out of 50, five isolates showed significantly higher enzyme production in preliminary screening assays. Morphological and biochemical characterization revealed 60% of the isolates as gram-negative bacteria including two highest enzyme-producing isolates. The isolates were identified as Pseudomonas aeruginosa through sequencing of 16S rRNA gene. Maximum production of enzyme from P. aeruginosa YK17 was achieved with 2% chicken feather, beef extract, and ammonium nitrate as organic and inorganic nitrogen sources and glucose as a carbon source. Further analysis revealed that 3% inoculum, 40 °C growth temperature and 72-h incubation, resulted in maximum production of keratinase.

Conclusion: The overall results showed significant higher production of enzyme by the P. aeruginosa YK17 that can be used for the degradation of recalcitrant keratin waste and chemical dehairing in leather industries, thereby preventing environmental pollution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8024431PMC
http://dx.doi.org/10.1186/s43141-021-00149-8DOI Listing

Publication Analysis

Top Keywords

maximum production
12
production enzyme
12
production
9
pseudomonas aeruginosa
8
gram-negative bacteria
8
enzyme production
8
enzyme aeruginosa
8
aeruginosa yk17
8
bacteria
5
enzyme
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!