Parkinson's disease (PD) is the second most chronic neurodegenerative disorder worldwide. Deficit of monoamines, particularly dopamine, causes an individually varying compilation of motor and non-motor features. Constraint of presynaptic uptake extends monoamine stay in the synaptic cleft. This review discusses possible benefits of dopamine reuptake inhibition for the treatment of PD. Translation of this pharmacologic principle into positive clinical study results failed to date. Past clinical trial designs did not consider a mandatory, concomitant stable inhibition of glial monoamine turnover, i.e. with monoamine oxidase B inhibitors. These studies focused on improvement of motor behavior and levodopa associated motor complications, which are fluctuations of motor and non-motor behavior. Future clinical investigations in early, levodopa- and dopamine agonist naïve patients shall also aim on alleviation of non-motor symptoms, like fatigue, apathy or cognitive slowing. Oral levodopa/dopa decarboxylase inhibitor application is inevitably necessary with advance of PD. Monoamine reuptake (MRT) inhibition improves the efficacy of levodopa, the blood brain barrier crossing metabolic precursor of dopamine. The pulsatile brain delivery pattern of orally administered levodopa containing formulations results in synaptic dopamine variability. Ups and downs of dopamine counteract the physiologic principle of continuous neurotransmission, particularly in nigrostriatal, respectively mesocorticolimbic pathways, both of which regulate motor respectively non-motor behavior. Thus synaptic dopamine pulsatility overwhelms the existing buffering capacity. Onset of motor and non-motor complications occurs. Future MRT inhibitor studies shall focus on a stabilizing and preventive effect on levodopa related fluctuations of motor and non-motor behavior. Their long-term study designs in advanced levodopa treated patients shall allow a cautious adaptation of oral l-dopa therapy combined with a mandatory inhibition of glial monoamine turnover. Then the evidence for a preventive and beneficial, symptomatic effect of MRT inhibition on motor and non-motor complications will become more likely.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8018398 | PMC |
http://dx.doi.org/10.2147/JEP.S267032 | DOI Listing |
PLoS One
January 2025
Institute of Psychiatry, Psychology & Neuroscience at King's College London, London, United Kingdom.
Fluctuation-related pain (FRP) affects more than one third of people with Parkinson's disease (PwP, PD) and has a harmful effect on health-related quality of life (HRQoL), but often remains under-reported by patients and neglected by clinicians. The National Institute for Health and Care Excellence (NICE) recommends The Parkinson KinetiGraphTM (the PKGTM) for remote monitoring of motor symptoms. We investigated potential links between the PKGTM-obtained parameters and clinical rating scores for FRP in PwP in an exploratory, cross-sectional analysis of two prospective studies: "The Non-motor International Longitudinal, Real-Life Study in PD-NILS" and "An observational-based registry of baseline PKG™ in PD-PKGReg".
View Article and Find Full Text PDFBMJ Open
December 2024
Dr D Y Patil Vidyapeeth, Dr D Y Patil Medical College Hospital and Research Centre, Pune, Maharashtra, India.
Introduction: Parkinson's disease is a neurodegenerative disorder that presents with motor symptoms such as tremors, slowness and gait difficulties, in addition to various non-motor symptoms such as anxiety, depression and autonomic and sleep disturbances. Pranayama (yogic breathing practices) has been studied as a part of yoga interventions in Parkinson's disease. Previous systematic reviews and meta-analyses have not detailed the pranayama practices used in clinical studies, and there is no clarity on the pranayama practices that would be most beneficial for Parkinson's disease.
View Article and Find Full Text PDFCureus
December 2024
Neurology, King Faisal Specialist Hospital and Research Centre, Riyadh, SAU.
Herein, we review the literature on Parkinson's disease (PD) management and summarize the progress in medical, surgical, and assisted therapeutic modalities for motor and non-motor symptoms. A thorough search strategy was implemented to retrieve all relevant articles and identify the best evidence from different databases including Scopus, PubMed, Google Scholar, the Cochrane Database of Systematic Reviews, and Evidence-Based Medicine reviews from the International Parkinson and Movement Disorder Society. Multiple terms, such as Parkinson, tremor, predominant, Parkinson management, deep brain stimulation, LCIG, ablative surgery for PD, medical management of PD, and assistive devices for PD, were used for screening.
View Article and Find Full Text PDFTremor Other Hyperkinet Mov (N Y)
January 2025
Department of General Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
Background: Variants in the gene, encoding guanosine triphosphate cyclohydrolase, are associated with dopa-responsive dystonia (DRD) and are considered risk factors for parkinson's disease.
Methods: Comprehensive neurological assessments documented motor and non-motor symptoms in a Chinese family affected by DRD. Whole-exome sequencing (WES) was employed to identify potential mutations, with key variants confirmed by Sanger sequencing and analyzed for familial co-segregation.
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms, primarily due to the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Factors contributing to this neuronal degeneration include mitochondrial dysfunction, oxidative stress, and neuronal excitotoxicity. Despite extensive research, the exact etiology of PD remains unclear, with both genetic and environmental factors playing significant roles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!