Chronic myeloid leukemia (CML) is an age-dependent blood malignancy. Like many other age-dependent human diseases, laboratory animal research of CML uses young mice that do not factor in the influence of aging. To understand how aging may impact animal modeling of human age-dependent diseases, we established the first aging mouse model of human CML in BALB/c mice in the advanced age defined by 75% survival. This model was developed by noncytotoxic depletion of bone marrow lineage-positive cells followed by BCR-ABL retroviral transduction and transplantation. CML developed in aging mice shared many similarities to that in young mice, but had increased incidence of anemia that is often seen in human CML. Importantly, we showed that aging of both donor hematopoietic stem cells and recipient bone marrow niche impacted BCR-ABL mediated leukemogenesis and leukemia spectrum. Optimal CML induction relied on age-matching for donors and recipients, and cross-transplantation between young and old mice produced a mixture of different leukemia. Therefore, our model provides initial evidence of the feasibility and merit of CML modeling in aging mice and offers a new tool for future studies of CML stem cell drug resistance and therapeutic intervention in which aging would be taken into consideration as an influencing factor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8087641PMC
http://dx.doi.org/10.1038/s41388-021-01770-0DOI Listing

Publication Analysis

Top Keywords

young mice
12
aging
8
aging mouse
8
mouse model
8
model human
8
chronic myeloid
8
myeloid leukemia
8
cml
8
human cml
8
bone marrow
8

Similar Publications

Multiple sclerosis (MS) is a prevalent inflammatory neurodegenerative disease in young people, causing neurological abnormalities and impairment. To investigate a novel therapeutic agent for MS, we observed the impact of maresin 1 (MaR1) on disease progression in a well-known, relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE) mouse model. Treatment with MaR1 accelerated inflammation resolution, reduced neurological impairment, and delayed disease development by reducing immune cell infiltration (CD4+IL-17+ and CD4+IFNγ+) into the central nervous system (CNS).

View Article and Find Full Text PDF

The two obstacles for treating glioma are the skull and the blood brain-barrier (BBB), the first of which forms a physical shield that increases the difficulties of traditional surgery or radiotherapy, while the latter prevents antitumor drugs reaching tumor sites. To conquer these issues, we take advantage of the high penetrating ability of sonodynamic therapy (SDT), combined with a novel nanocomplex that can easily pass the BBB. Through ultrasonic polymerization, the amphiphilic peptides (CGRRGDS) were self-assembled as a spherical shell encapsulating a sonosensitizer Rose Bengal (RB) and a plant-derived compound, sulforaphane (SFN), to form the nanocomplex SFN@RB@SPM.

View Article and Find Full Text PDF

Background/objectives: Ulcerative colitis (UC) is a chronic and easily recurrent inflammatory bowel disease. The gut microbiota and plasma metabolites play pivotal roles in the development and progression of UC. Therefore, therapeutic strategies targeting the intestinal flora or plasma metabolites offer promising avenues for the treatment of UC.

View Article and Find Full Text PDF

Gentamicin (GM) administration is associated with decreased metabolism, increased oxidative stress, and induction of nephrotoxicity. L., containing flavonoids, anthocyanins, and phytosterols, possesses antioxidant and anti-inflammatory potential.

View Article and Find Full Text PDF

Collagen I is the most abundant type of intramuscular collagen. Lysyl oxidase promotes collagen cross-link formation, which helps stabilize the extracellular matrix. Furthermore, matrix metalloproteinases, responsible for collagen degradation, maintain typical muscle structure and function through remodeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!