While the anomalous Hall effect can manifest even without an external magnetic field, time reversal symmetry is nonetheless still broken by the internal magnetization of the sample. Recently, it has been shown that certain materials without an inversion center allow for a nonlinear type of anomalous Hall effect whilst retaining time reversal symmetry. The effect may arise from either Berry curvature or through various asymmetric scattering mechanisms. Here, we report the observation of an extremely large c-axis nonlinear anomalous Hall effect in the non-centrosymmetric T phase of MoTe and WTe without intrinsic magnetic order. We find that the effect is dominated by skew-scattering at higher temperatures combined with another scattering process active at low temperatures. Application of higher bias yields an extremely large Hall ratio of E/E = 2.47 and corresponding anomalous Hall conductivity of order 8 × 10 S/m.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8024290 | PMC |
http://dx.doi.org/10.1038/s41467-021-22343-5 | DOI Listing |
Sci Rep
January 2025
Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691, Stockholm, Sweden.
Non-trivial band topology along with magnetism leads to different novel quantum phases. When time-reversal symmetry is broken in three-dimensional topological insulators (TIs) through, e.g.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Physics and Electrical Engineering, Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei Longzhong Laboratory, Hubei University of Arts and Science, Xiangyang, Hubei, 441053, China.
Exploring valleytronics in two-dimensional materials is of great significance for the development of advanced information devices. In this study, we investigate the valley polarization and electronic properties of V-doped 2H-phase Janus MoSeTe by using first-principles calculations. Our results reveal a remarkable valley spin splitting up to 60 meV, driven by the breaking of time-reversal symmetry due to the magnetic effect of V 3d orbitals.
View Article and Find Full Text PDFNat Nanotechnol
January 2025
Department of Physics and Astronomy, University of California, Irvine, CA, USA.
Spin-orbit torques enable energy-efficient manipulation of magnetization by electric current and hold promise for applications ranging from non-volatile memory to neuromorphic computing. Here we report the discovery of a giant spin-orbit torque induced by anomalous Hall current in ferromagnetic conductors. This anomalous Hall torque is self-generated as it acts on the magnetization of the ferromagnet that engenders the torque.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
Antiferromagnets with broken time-reversal ( ) symmetry ( -odd antiferromagnets) have gained extensive attention, mainly due to their ferromagnet-like behavior despite the absence of net magnetization. However, certain types of -odd antiferromagnets remain inaccessible by the typical ferromagnet-like phenomena (e.g.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No 10, Bandung 40132, Jawa Barat, Indonesia.
The magnetic, electronic, and topological properties of GdPtBi were systematically investigated using first-principles density functional theory (DFT) calculations. Various magnetic configurations were examined, including ferromagnetic (FM) and antiferromagnetic (AFM) states, with particular focus on AFM states where the Gd magnetic moments align either parallel (AFM) or perpendicular (AFM) to the [111] crystal direction. For AFM, the in-plane angles were varied at = 0°, 15°, and 30° (denoted as AFM, AFM, and AFM, respectively).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!