A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Assessing flood resilience of urban drainage system based on a 'do-nothing' benchmark. | LitMetric

Assessing flood resilience of urban drainage system based on a 'do-nothing' benchmark.

J Environ Manage

Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Rd, Exeter, EX4 4QF, UK.

Published: June 2021

To deal with the threat of urban flooding, it is necessary to assess the flood resilience of urban drainage systems at the planning and design stage. This study proposes a system resilience assessment methodology based on a 'do-nothing' benchmark. In this new benchmark, the number of flooded nodes used in computation of mean flood duration in the system is that observed under a 'do-nothing' scenario (i.e. with no intervention), irrespective of the scenario under evaluation. This methodology is demonstrated using a case study in Chizhou city, China, a simple stormwater drainage network with seven subcatchments. Schemes of interventions (with distributed storage tanks) that aim to mitigate flooding are then produced by zero-one integer programming and schemes sampling. The results show that the proposed method can compute the mean flood duration and system resilience reasonably and helps identify effective intervention schemes. Compared with traditional methods, this resilience assessment method based on a 'do-nothing' scenario can correctly indicate the change in trend of system resilience provided by different schemes, and aids understanding of different interventions to improve system resilience to urban flooding. This study also provides a new way to test different interventions and to explore which provide the greatest improvement in system resilience.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2021.112472DOI Listing

Publication Analysis

Top Keywords

system resilience
20
resilience urban
12
based 'do-nothing'
12
resilience
8
flood resilience
8
urban drainage
8
'do-nothing' benchmark
8
urban flooding
8
resilience assessment
8
flood duration
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!