Familial Alzheimer's disease (FAD)-linked mutations in the APP gene occur either within the Aβ-coding region or immediately proximal and are located in exons 16 and 17, which encode Aβ peptides. We have identified an extremely rare, partially penetrant, single nucleotide variant (SNV), rs145081708, in APP that corresponds to a Ser198Pro substitution in exon 5. We now report that in stably transfected cells, expression of APP harboring the S198P mutation (APPS198P) leads to elevated production of Aβ peptides by an unconventional mechanism in which the folding and exit of APPS198P from the endoplasmic reticulum is accelerated. More importantly, coexpression of APP S198P and the FAD-linked PS1ΔE9 variant in the brains of male and female transgenic mice leads to elevated steady-state Aβ peptide levels and acceleration of Aβ deposition compared with age- and gender-matched mice expressing APP and PS1ΔE9. This is the first AD-linked mutation in APP present outside of exons 16 and 17 that enhances Aβ production and deposition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8034382PMC
http://dx.doi.org/10.1084/jem.20210313DOI Listing

Publication Analysis

Top Keywords

aβ production
8
aβ peptides
8
leads elevated
8
app
7
7
app ectodomain
4
ectodomain mutation
4
mutation aβ
4
aβ domain
4
domain promotes
4

Similar Publications

The interest in the A-stage of the adsorption/bio-oxidation (A/B) process has considerably increased due to its capacity of carbon redirection to the solids stream. Induced by its flexible and compact design, the Alternating Activated Adsorption (AAA) was recently implemented in full-scale as an alternative A-stage system. However, the literature on such a system is scarce.

View Article and Find Full Text PDF

The eosinophilia-myalgia syndrome (EMS) outbreak of 1989 that occurred in the USA and elsewhere was caused by the ingestion of l-Tryptophan (L-Trp) solely manufactured by the Japanese company Showa Denko K.K. (SD).

View Article and Find Full Text PDF

This study aims to model a minimal dynein motor domain capable of motor function, which consists of the linker domain, six AAA+ modules (AAA1-AAA6), coiled coil stalk, and C-terminus domain. To this end, we have used the newly solved X-ray structures of dynein motor domain to perform a coarse-grained modeling of dynein's post- and pre-powerstroke conformation and the conformational transition between them. First, we have used normal mode analysis to identify a single normal mode that captures the coupled motions of AAA1-AAA2 closing and linker domain rotation, which enables the ATP-driven recovery stroke of dynein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!