Cobalt-Catalyzed ()-β-Selective Hydrogermylation of Terminal Alkynes.

Org Lett

Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607, United States.

Published: April 2021

A cobalt-catalyzed method for the hydrogermylation of alkynes is reported, providing a selective and accessible route to ()-β-vinyl(trialkyl)germanes from terminal alkynes and HGeBu. As shown in multiple examples, the developed method demonstrates a broad functional group tolerance an practical utility for late-stage hydrogermylation of natural products. The method is compatible with alkynes bearing both aryl and alkyl substituents, providing unrivaled selectivity for previously challenging 1° alkyl-substituted alkynes. Moreover, the catalyst used in this method, Co(CO), is a cheap and commercially available reagent. Conducted mechanistic studies supported the -addition of BuGeH to an alkyne π-complex.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.1c00928DOI Listing

Publication Analysis

Top Keywords

terminal alkynes
8
alkynes
5
cobalt-catalyzed -β-selective
4
-β-selective hydrogermylation
4
hydrogermylation terminal
4
alkynes cobalt-catalyzed
4
method
4
cobalt-catalyzed method
4
method hydrogermylation
4
hydrogermylation alkynes
4

Similar Publications

From Pseudocyclic to Macrocyclic Ionophores: Strategies toward the Synthesis of Cyclic Monensin Derivatives.

J Org Chem

January 2025

Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.

There has been a long search for a simple preparation of new cyclic analogues of ionophore antibiotics. We report a simple and general synthesis of three new cyclic derivatives of polyether ionophore, monensin A (MON). The application of the Huisgen 1,3-dipolar cycloaddition of azides and terminal alkynes to macrocyclization results in a concise, synthetic route to monensin lacton or lactam in only 4 steps.

View Article and Find Full Text PDF

In this work, coixalkyne A (), a natural polynuclear calcium complex with a novel cross-shaped molecular architecture, was isolated from L. along with the undescribed analogue coixalkyne B (). Their structures were identified by means of NMR spectroscopy, ECD calculations, and single-crystal X-ray diffraction.

View Article and Find Full Text PDF

The reaction between 1,3-bis(3,5-dimethylpyrazolylmethyl)hexahydropyrimidine L and Mo(CO) in CHCN at 130 °C afforded a binuclear Mo(0) complex 1 containing a new macrocycle formed upon C-N bond cleavage in L in good yield. Conversely, a clean reaction takes place between L and [Mo(CO)(COD)] in THF at 60 °C to give a new metalloligand complex [Mo(CO)(κ-,-L)] 2 containing a spectator pyrazole arm in 83% yield. Their structures were determined by X-ray diffraction methods, and a plausible mechanism is proposed for the C-N bond cleavage leading to complex 1.

View Article and Find Full Text PDF

Metal-organic frameworks generated from oligomeric ligands with functionalized tethers.

Chem Sci

December 2024

Department of Chemistry and Biochemistry, University of California, San Diego La Jolla California 92093 USA

Metal-organic frameworks (MOFs) can be prepared from oligomeric organic ligands to prepare materials referred to as oligoMOFs. Studies of oligoMOFs are relatively limited, with most existing reports focused on fundamental structure-property relationships. In this report, functional groups, such as terminal alkynes and pyridine groups, are installed on the tether between 1,4-benzene dicarboxylic acid (Hbdc) groups of the dimer ligands.

View Article and Find Full Text PDF

Recycling e-waste into gold-loaded covalent organic framework catalysts for terminal alkyne carboxylation.

Nat Commun

December 2024

Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, USA.

The rising demand for gold requires innovative methods for its recovery from e-waste. Here we present the synthesis of two tetrazine-based vinyl-linked covalent organic frameworks: TTF-COF and TPE-COF that adsorb gold ions and nanoparticles and catalyze the carboxylation of terminal alkynes. These covalent organic frameworks have low band gaps and high photocurrent responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!