Objectives: The objective of this study is to demonstrate that computational finite element models can be used to reliably simulate dynamic interaction between a pacifier, the palate, and the tongue during nonnutritive sucking (NNS). The interactions can be quantified by the results of finite element analyses which include deformation, strain, stress, contact force, and contact area.
Materials And Methods: A finite element model was created based upon CAD solid models of an infant pacifier and palate. The silicone pacifier bulb is represented by a hyperelastic constitutive law. Contact surfaces are defined between the pacifier and palate. A time and spatially varying pressure load is applied to the bulb representing peristaltic interaction with the tongue. A second time-varying, periodic pressure representing NNS is applied to the model simultaneously. A large displacement, nonlinear transient dynamic analysis is run over two NNS cycles.
Results: Results from the finite element analysis show the deformed shape of the bulb with maximum principal elastic strain of 0.23 and a range of maximum principal stress on the palate from 0.60 MPa (tensile) to -0.27 MPa (compressive) over the NNS cycles. The areas of contact between the pacifier and the palate are shown in surface contour plots.
Conclusions: A nonlinear transient dynamic finite element model can simulate the mechanical behavior of a pacifier and its interaction with the tongue and contact with the palate subject to NNS. Quantitative results predicting deformation, strain, stress, contact force, and contact area can be used in comparative studies to provide insight on how pacifiers cause changes in dental, orthognathic, and facial development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8543471 | PMC |
http://dx.doi.org/10.1002/cre2.428 | DOI Listing |
PLoS One
January 2025
Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai, China.
Highway guardrails are critical safety infrastructure along roadways, designed to redirect vehicles back into their lanes and facilitate a gradual deceleration to a complete stop. Traditional highway steel guardrails exhibit significant limitations, including inadequate energy absorption, susceptibility to corrosion, and an increased risk of vehicles leaving the roadway during severe collisions. Furthermore, the production and transportation of these guardrails contribute to substantial carbon emissions and environmental pollution.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Faculty of Technical Chemistry, Institute of Chemical Technologies and Analytics, Technische Universität Wien, Vienna 1060, Austria.
Atomic force microscopy-infrared spectroscopy (AFM-IR) is a photothermal scanning probe technique that combines nanoscale spatial resolution with the chemical analysis capability of mid-infrared spectroscopy. Using this hybrid technique, chemical identification down to the single molecule level has been demonstrated. However, the mechanism at the heart of AFM-IR, the transduction of local photothermal heating to cantilever deflection, is still not fully understood.
View Article and Find Full Text PDFDent Traumatol
January 2025
Division of Orthodontics and Dentofacial Deformities, Centre for Dental Education and Research, All India Institute of Medical Sciences, Delhi, India.
Background/aims: Preformed zirconia crowns have emerged as the preferred choice for restoring damaged primary incisors. However, they differ from natural teeth in their biophysical properties and can potentially alter the overall response of crowned teeth to a traumatic load. This in silico study aimed to compare the response of three different traumatic loading conditions for the (i) natural (M1) and (ii) zirconia-restored tooth models (M2) models.
View Article and Find Full Text PDFAnat Rec (Hoboken)
January 2025
School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, UK.
Determining the ecology of fossil species presents considerable challenges due to the often fragmentary preservation of specimens. The mammaliaform Hadrocodium wui from the Jurassic of China is known only from the cranium and mandible but may have had a fossorial lifestyle. It shares morphological similarities with talpid moles and soricid shrews and is closely related to other fossorial mammaliaforms.
View Article and Find Full Text PDFJ Anat
January 2025
Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS) and Human Anatomy Resource Centre (HARC), Education Directorate, University of Liverpool, Liverpool, UK.
The importance of interactions between neighbouring rapidly growing tissues of the head during development is recognised, yet this competition for space remains incompletely understood. The developing structures likely interact through a variety of mechanisms, including directly genetically programmed growth, and are mediated via physiological signalling that can be triggered by structural interactions. In this study, we aimed to investigate a different but related potential mechanism, that of simple mechanical plastic deformation of neighbouring structures of the head in response to soft tissue expansion during human postnatal ontogeny.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!