Efflux and assimilation of xylem-transported CO in stems and leaves of tree species with different wood anatomy.

Plant Cell Environ

Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.

Published: November 2021

Determining the fate of CO respired in woody tissues is necessary to understand plant respiratory physiology and to evaluate CO recycling mechanisms. An aqueous C-enriched CO solution was infused into the stem of 3-4 m tall trees to estimate efflux and assimilation of xylem-transported CO via cavity ring-down laser spectroscopy and isotope ratio mass spectrometry, respectively. Different tree locations (lower stem, upper stem and leafy shoots) and tissues (xylem, bark and leaves) were monitored in species with tracheid, diffuse- and ring-porous wood anatomy (cedar, maple and oak, respectively). Radial xylem CO diffusivity and xylem [CO ] were lower in cedar relative to maple and oak trees, thereby limiting label diffusion. Part of the labeled CO was assimilated in cedar (8.7%) and oak (20.6%) trees, mostly in xylem and bark tissues of the stem, while limited solution uptake in maple trees hindered the detection of label assimilation. Little label reached foliar tissues, suggesting substantial label loss along the stem-branch transition following reductions in the radial diffusive pathway. Differences in respiration rates and radial xylem CO diffusivity (lower in conifer relative to angiosperm species) might reconcile discrepancies in efflux and assimilation of xylem-transported CO so far observed between taxonomic clades.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.14062DOI Listing

Publication Analysis

Top Keywords

efflux assimilation
12
assimilation xylem-transported
12
wood anatomy
8
xylem bark
8
maple oak
8
radial xylem
8
xylem diffusivity
8
xylem
5
xylem-transported stems
4
stems leaves
4

Similar Publications

Background: The genomes of publicly available electroactive Pseudomonas aeruginosa strains are currently limited to in-silico analyses. This study analyzed the electroactive Pseudomonas aeruginosa PBH03 genome using comparative in-silico studies for biotechnological applications.

Objective: Comparative in-silico and experimental analyses were conducted to identify the novel traits of P.

View Article and Find Full Text PDF

Analysis of biokinetic parameters reveals patterns in mercury accumulation across aquatic species.

Sci Total Environ

December 2024

Oak Ridge National Laboratory, Environmental Sciences Division, Oak Ridge, TN, United States of America.

Article Synopsis
  • Mercury is a toxic substance that accumulates in fish, particularly in its organic form, methylmercury (MeHg), which poses risks to human health through contaminated fish consumption.
  • Understanding how mercury accumulates in aquatic species requires analyzing several biokinetic parameters, including uptake rate, assimilation efficiency, and efflux rate, which were studied across 38 fish and 34 aquatic invertebrate species, yielding 502 total data points.
  • The study found that the form of mercury and various environmental factors like water type and organism weight significantly influenced these parameters, highlighting differences between fish and invertebrates, and challenging previous assumptions about the impact of environmental conditions on mercury accumulation in aquatic ecosystems.
View Article and Find Full Text PDF

Background: Bacteria can develop resistance to various antibiotics under selective pressure, leading to multifaceted changes in resistance mechanisms. Transcriptomic sequencing allows for the observation of transcriptional level alterations in cells under antibiotic stress. Understanding the bacterial response to such stress is essential for deciphering their strategy against drug-resistant antibiotics and identifying potential targets for antibiotic development.

View Article and Find Full Text PDF

-Alkane Assimilation by and Its Interactions with Virulence and Antibiotic Resistance.

Antibiotics (Basel)

October 2024

Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary.

strains with potential for degrading -alkanes are frequently cultured from hydrocarbon-contaminated sites. The initial hydroxylation step of long-chain -alkanes is mediated by the chromosomally encoded AlkB1 and AlkB2 alkane hydroxylases. The acquisition of an additional GPo1-like alkane hydroxylase gene cluster can extend the substrate range assimilated by to View Article and Find Full Text PDF

Zinc (Zn) is the second most abundant metal in the human body and is essential for the function of 10% of all proteins. As metals cannot be synthesized or degraded, they must be assimilated from the diet by specialized transport proteins, which unfortunately also provide an entry route for the toxic metal pollutant cadmium (Cd). The intestinal absorption of Zn depends on the composition of food that is consumed, firstly the amount of Zn itself and then the quantity of other food constituents such as phytate, protein, and calcium (Ca).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!