The aqueous seed extract of Annona squamosa L. was used as a reducing and stabilizing agent for the synthesis of silver nanoparticles (AgNPs). The formation of AgNPs in aqueous silver nitrate solution after the addition of the extract was indicated by a colour change from pale yellow to dark brown corresponding to a λ at 430 nm. The phytochemicals in the extract, responsible for efficient capping and stabilization of the nanoparticles, were identified by FTIR. Powder XRD pattern demonstrated the polycrystalline nature of the AgNPs. TEM image confirmed that AgNPs were spherical in shape and the average particle size was found to be 22 nm. Further, the nanoparticles exhibited good catalytic activity towards the degradation of coomassie brilliant blue dye and demonstrated significant antibacterial activity. Their larvicidal activity against mosquito larvae showed a LC value 22.44 μg/mL against III instars. In addition, AgNPs positively influenced the germination of chickpea seeds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00449-021-02562-2 | DOI Listing |
PLoS One
March 2025
Food Technology and Process Engineering, Oda Bultum University, Chiro, Ethiopia.
This study investigates the synthesis and characterization of Plant-Ag-graphene nanocomposites through a combination of spectroscopic and microscopic techniques, the nanocomposites were formed by catalyzing silver nanoparticles with plant extracts, and the resulting structures were analyzed using advanced instrumentation. In the FTIR analysis, distinctive peaks were observed at 3340 cm⁻1 (O-H stretching), 1740 cm⁻1 (C = O stretching), and 1050 cm⁻1. When compared to silver nanoparticles, the nanocomposites exhibited altered peak intensities, indicating modifications in chemical bonding.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2025
Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa 516005, India.
The use of metal nanoparticles is gaining popularity owing to their low cost and high efficacy. We focused on green synthesis of silver nanoparticles (AgNPs) using (Tc) leaf extracts. The structural characteristics of Tc nanoparticles (TcAgNPs) were determined using several advanced techniques.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Department of Biotechnology, Vaagdevi Degree and P.G. College, Warangal 506001, India.
This study explores the green synthesis of silver nanoparticles (AgNPs) using (lemongrass) extract as a reducing agent. Synthesis was confirmed by a color change (light yellow to dark brown) under optimal conditions: 1.50 mM silver nitrate, 3.
View Article and Find Full Text PDFSovrem Tekhnologii Med
March 2025
DSc, Professor, Department of Biophysics, Faculty of Biology; Lomonosov Moscow State University, 1 Leninskiye Gory, Moscow, 119991, Russia; Professor, Department of Physical Materials; National University of Science and Technology "MISIS", 4 Leninsky Prospect, Moscow, 119049, Russia.
Unlabelled: was to identify differences in the structure of the neuronal process network as well as the composition and functional state of cells by studying the bodies and processes of rat brain neurons and astrocytes obtained from pluripotent stem cells of healthy donors and patients with hereditary Parkinson's disease by using a complex of modern high-precision methods such as Raman microspectroscopy, surface-enhanced Raman microspectroscopy, and scanning ion-conductance microscopy.
Materials And Methods: By using Raman spectroscopy and scanning ion-conductance microscopy, the researchers studied the morphology and state of molecules in rat brain neurons and astrocytes induced from pluripotent stem cells of healthy donors and patients with hereditary Parkinson's disease.
Results: The researchers established that typical bands of Raman and surface-enhanced Raman spectra of neurons and astrocytes allowed studying the distribution and conformation of a series of biological molecules (proteins, lipids, cytochromes) in healthy and unhealthy states.
Microsc Res Tech
March 2025
Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia.
Cisplatin and other anticancer drugs face challenges such as systemic toxicity and drug resistance, necessitating novel delivery strategies. Nanoparticles have revolutionized drug delivery by enhancing the efficacy and bioavailability of therapeutic agents. In this study, silver nanoparticles (AgNPs) were green-synthesized using Chromolaena odorata (CO) and characterized using UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS), x-ray diffraction (XRD), thermogravimetric analysis (TGA), and transmission electron microscopy (TEM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!