Two-dimensional carbon materials, incorporating a large mesoporosity, are attracting considerable research interest in various fields such as catalysis, electrochemistry, and energy-related technologies owing to their integrated functionalities. However, their potential applications, which require favorable mass transport within mesopore channels, are constrained by the undesirable and finite mesostructural configurations due to the immense synthetic difficulties. Herein, we demonstrate an oriented monomicelle assembly strategy, for the facile fabrication of highly ordered mesoporous carbon thin films with vertically aligned and permeable mesopore channels. Such a facile and reproducible approach relies on the swelling and fusion effect of hydrophobic benzene homologues for directional monomicelle assembly. The orientation assembly process shows precise controllability and great universality, affording mesoporous carbon films with a cracking-free structure over a centimeter in size, highly tunable thicknesses (13 to 85 nm, an interval of ∼12 nm), mesopore size (8.4 to 13.5 nm), and switchable growth substrates. Owing to their large permeable mesopore channels, electrochemical sensors based on vertical mesoporous carbon films exhibit an ultralow limit of detection (50 nmol L) and great sensitivity in dopamine detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.1c01367 | DOI Listing |
Adv Mater
January 2025
School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China.
As an alternative to bulk counterparts, metal-organic framework (MOF) nanoparticles isolated within conductive mesoporous carbon matrices are of increasing interest for electrochemical applications. Although promising, a "clean" carbon surface is generally associated with poor compatibility and weak interactions with metal/ligand precursors, which leads to the growth of MOFs with inhomogeneous particle sizes on outer pore walls. Here, a general methodology for in situ synthesis of eight nanoMOF composites within mesochannels with high dispersity and stability are reported.
View Article and Find Full Text PDFACS Omega
January 2025
School of Safety Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China.
Hot dry rock (HDR) geothermal development faces challenges due to the difficulty of stimulating fluid flow and heat-exchange fracture channels within deep, low-porosity, and low-permeability reservoirs. A liquid nitrogen cyclic cold shock method was proposed, using liquid nitrogen as a fracturing fluid. The large temperature difference between the liquid nitrogen and the hot rock induces thermal stress, forming a complex pore-fracture network.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Applied Chemistry, Aligarh Muslim University, Aligarh, 202002, India.
A porous and flexible Zn-MOF was synthesized under solvothermal conditions by using the ligand 2,5-furandicarboxylic acid (2,5-FDA). This flexible Zn-MOF demonstrates a temperature-triggered breathing effect. At low temperature (100 K), we obtained the high-symmetry MOF denoted as with a unit cell volume of 1958 Å, characterized by triangular narrow pore (np) channels.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China.
ACS Nano
January 2025
School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
Intracellular bacteria can evade the attack of the immune system and the bactericidal effects of most antibiotics due to the protective effect of the host cells. Herein, inspired by the stimuli-responsive behaviors of biological ion channels, a kind of synergistic cascade potassium ion (K)-responsive nanoparticles gated with K-responsive polymers is ingeniously designed to target intracellular bacteria and then control drug release. Due to the cooperative interaction of host-guest complexation and conformational transition of K-responsive polymers, the grafted gates based on these polymers could recognize high K concentration to reverse the negatively charged nanoparticles into positively charged ones for targeting bacteria and subsequently inducing a switch from the hydrophobic shrinking "off" state to the hydrophilic stretching "on" state for drug release.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!