Background: Insect desensitizing nicotinic acetylcholine (nAChD) receptors are desensitized by low concentrations of agonists, including neonicotinoid insecticides, but are essentially insensitive to spinosyns, while non-desensitizing nicotinic acetylcholine (nAChN) receptors are selectively activated by spinosyns and relatively insensitive to neonicotinoids.
Results: The single-electrode voltage-clamp technique was used to measure the actions of newer nicotinic insecticides dinotefuran, sulfoxaflor, triflumezopyrim, spinetoram and GS-ω/k-hexatoxin-Hv1a on cockroach neuronal nAChD and nAChN currents. Like imidacloprid and clothianidin, newer orthosteric nicotinic agonist insecticides dinotefuran and sulfoxaflor act by desensitizing nAChD receptors. The mesoionic insecticide triflumezopyrim selectively inhibited nAChD current with an half maximal inhibitory concentration (IC ) of 1.2 nmol L , with no activation. Unlike other Group 4 insecticides, it did not activate nAChN current, but inhibited it with an IC of 3.8 μmol L , indicating that the compound is a true antagonist. Spinosad and the spinosyn-derived insecticide spinetoram potently and selectively activated nAChN receptors. GS-ω/k-hexatoxin-Hv1a had no effect on nAChN currents and it had a complex action on nAChD currents, inhibiting at sub-nanomolar concentrations and causing some activation and enhancement of ACh-evoked currents at 30 nmol L and above. Some cells express GS-ω/k-hexatoxin-Hv1a-resistant nAChD receptors.
Conclusions: Nicotinic acetylcholine receptor competitive modulators (IRAC Group 4) and nicotinic acetylcholine receptor allosteric modulators, site II (hexatoxins, IRAC Group 32) are selective for nAChD receptors, while nicotinic acetylcholine receptor allosteric modulators, site I (spinosyns, IRAC Group 5) are selective for nAChN receptors. It is proposed that IRAC Groups 5 and 32 be re-named non-desensitizing nicotinic acetylcholine receptor allosteric modulators and desensitizing nicotinic acetylcholine receptor allosteric modulators, respectively. © 2021 Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ps.6396 | DOI Listing |
J Chem Ecol
January 2025
Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
In modern agriculture, control of insect pests is achieved by using insecticides that can also have lethal and sublethal effects on beneficial non-target organisms. Here, we investigate acute toxicity and sublethal effects of four insecticides on the males' sex pheromone response and the female host finding ability of the Drosophila parasitoid Leptopilina heterotoma. The nicotinic acetylcholine receptor antagonists acetamiprid, flupyradifurone and sulfoxaflor, as well as the acetylcholinesterase inhibitor dimethoate were applied topically as acetone solutions.
View Article and Find Full Text PDFBiochem Pharmacol
January 2025
The Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines. Electronic address:
Conusvenoms are composed of peptides that are commonly post-translationally modified, increasing their chemical diversity beyond what is encoded in the genome and enhancing their potency and selectivity. This study describes how PTMs alter an α-conotoxin's selectivity for specific nAChR subtypes. Venom from the cone snailConus(Asprella)neocostatuswas fractionated using high-performance liquid chromatography and tested using a behavioral intracranial mouse bioassay and a cholinergic calcium imaging assay using SH-SY5Y neuroblastoma cells.
View Article and Find Full Text PDFActa Naturae
January 2024
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russian Federation.
The secreted human protein SLURP-2 is a regulator of epithelial homeostasis, which enhances the viability and migration of keratinocytes. The targets of SLURP-2 in keratinocytes are nicotinic and muscarinic acetylcholine receptors. This work is devoted to the search for the SLURP-2 functional regions responsible for enhancing keratinocyte viability and migration.
View Article and Find Full Text PDFExpert Opin Drug Discov
January 2025
Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala - CINVESTAV Tlaxcala, Tlaxcala, México.
Introduction: Existing pharmacotherapies for schizophrenia have not progressed beyond targeting dopamine and serotonin neurotransmission. Rodent models of schizophrenia are a necessary tool for elucidating neuropathological processes and testing potential pharmacotherapies, but positive preclinical results in rodent models often do not translate to positive results in the clinic.
Areas Covered: The authors reviewed PubMed for studies that applied rodent behavioral models of schizophrenia to assess the antipsychotic potential of several novel pharmacotherapies currently under investigation.
Bio Protoc
January 2025
School of Systems Biology, George Mason University, Fairfax, VA, USA.
Nicotinic acetylcholine receptors (nAChRs) are a family of ligand-gated ion channels expressed in nervous and non-nervous system tissue important for memory, movement, and sensory processes. The pharmacological targeting of nAChRs, using small molecules or peptides, is a promising approach for the development of compounds for the treatment of various human diseases including inflammatory and neurogenerative disorders such as Alzheimer's disease. Using the acetylcholine binding protein (Ac-AChBP) as an established structural surrogate for human homopentameric α7 nAChRs, we describe an innovative protein painting mass spectrometry (MS) method that can be used to identify interaction sites for various ligands at the extracellular nAChR site.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!