Genetically modified microorganisms (GMMs) can enable a wide range of important applications including environmental sensing and responsive engineered living materials. However, containment of GMMs to prevent environmental escape and satisfy regulatory requirements is a bottleneck for real-world use. While current biochemical strategies restrict unwanted growth of GMMs in the environment, there is a need for deployable physical containment technologies to achieve redundant, multi-layered and robust containment. We developed a hydrogel-based encapsulation system that incorporates a biocompatible multilayer tough shell and an alginate-based core. This deployable physical containment strategy (DEPCOS) allows no detectable GMM escape, bacteria to be protected against environmental insults including antibiotics and low pH, controllable lifespan and easy retrieval of genomically recoded bacteria. To highlight the versatility of DEPCOS, we demonstrated that robustly encapsulated cells can execute useful functions, including performing cell-cell communication with other encapsulated bacteria and sensing heavy metals in water samples from the Charles River.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269716PMC
http://dx.doi.org/10.1038/s41589-021-00779-6DOI Listing

Publication Analysis

Top Keywords

deployable physical
8
physical containment
8
hydrogel-based biocontainment
4
bacteria
4
biocontainment bacteria
4
bacteria continuous
4
continuous sensing
4
sensing computation
4
computation genetically
4
genetically modified
4

Similar Publications

Background: During the course of the past two decades, head-mounted augmented reality surgical navigation (HMARSN) systems have been increasingly employed in a variety of surgical specialties as a result of both advancements in augmented reality-related technologies and surgeons' desires to overcome some drawbacks inherent to conventional surgical navigation systems. In the present time, most experimental HMARSN systems adopt overlain display (OD) that overlay virtual models and planned routes of surgical tools on corresponding physical tissues, organs, lesions, and so forth, in a surgical field so as to provide surgeons with an intuitive and direct view to gain better hand-eye coordination as well as avoid attention shift and loss of sight (LOS), among other benefits during procedures. Yet, its system accuracy, which is the most crucial performance indicator of any surgical navigation system, is difficult to ascertain because it is highly subjective and user-dependent.

View Article and Find Full Text PDF

The Study of Adolescent Resilience (SOAR): a research protocol.

Front Child Adolesc Psychiatry

March 2024

Military Population Health Directorate, Naval Health Research Center, San Diego, CA, United States.

Background: Adolescence is a particularly sensitive period of development for military-connected youth, given the socioemotional and physical changes that occur against the backdrop of the military career of their parent(s). Military-connected adolescents face unique stressors relative to their civilian counterparts, such as military relocations, parental absence due to deployments and trainings, and parental military-related physical and mental injury. These stressors may change family dynamics and disrupt social support networks, which can have lasting implications for adolescent health and well-being.

View Article and Find Full Text PDF

Water-lean absorbents are regarded as a new generation of post-combustion CO2 capture technology that could significantly relieve those drawbacks posed by traditional aqueous alkanolamines. However, the exponential increase in viscosity during CO2 absorption remains an urgent issue that needs to be resolved before their practical deployment. In this work, novel water-lean amines based on biomass glycerol have been devised as single-component CO2 absorbents with low viscosity (79~110 cP at 25 oC, 29~39 cP at 40 oC) under high capacity (12~18 wt% at 25 oC, 10~17 wt% at 40 oC).

View Article and Find Full Text PDF

Transition-metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS), have emerged as a generation of nonprecious catalysts for the hydrogen evolution reaction (HER), largely due to their theoretical hydrogen adsorption energy close to that of platinum. However, efforts to activate the basal planes of TMDs have primarily centered around strategies such as introducing numerous atomic vacancies, creating vacancy-heteroatom complexes, or applying significant strain, especially for acidic media. These approaches, while potentially effective, present substantial challenges in practical large-scale deployment.

View Article and Find Full Text PDF

Many refugee camps exist for decades but associated infrastructure needs are only planned for the very short term, including provision of power. This study advocates a shift in approach to sustainable electrification of essential services in refugee camps for lighting, refrigeration, health, water, education, alongside camp operations. Qualitative and quantitative surveys were conducted in refugee camps in Uganda and Bangladesh which assessed the electrical supply needs across such categories.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!